
Debian Policy Manual
Release 4.7.0.2

The Debian Policy Mailing List

Jan 03, 2025

CONTENTS

1 About this manual 3
1.1 Scope . 3
1.2 New versions of this document . 4
1.3 Authors and Maintainers . 4

1.3.1 Early history . 4
1.3.2 Current process . 4
1.3.3 Improvements . 4

1.4 Related documents . 5
1.5 Definitions . 5
1.6 Translations . 6

2 The Debian Archive 7
2.1 The Debian Free Software Guidelines . 7
2.2 Archive areas . 8

2.2.1 The main archive area . 8
2.2.2 The non-free-firmware archive area . 9
2.2.3 The contrib archive area . 9
2.2.4 The non-free archive area . 9

2.3 Copyright considerations . 10
2.4 Sections . 11
2.5 Priorities . 11

3 Binary packages 13
3.1 The package name . 13

3.1.1 Packages with potentially offensive content . 13
3.2 The version of a package . 13

3.2.1 Version numbers based on dates . 14
3.2.2 Uniqueness of version numbers . 14

3.3 The maintainer of a package . 14
3.4 The description of a package . 15

3.4.1 The single line synopsis . 15
3.4.2 The extended description . 15

3.5 Dependencies . 15
3.6 Virtual packages . 16
3.7 Base system . 16
3.8 Essential packages . 16
3.9 Maintainer Scripts . 17

3.9.1 Prompting in maintainer scripts . 17

4 Source packages 19

i

4.1 Standards conformance . 19
4.2 Package relationships . 20
4.3 Changes to the upstream sources . 20
4.4 Debian changelog: debian/changelog . 21
4.5 Copyright: debian/copyright . 22
4.6 Error trapping in makefiles . 22
4.7 Time Stamps . 23
4.8 Restrictions on objects in source packages . 23
4.9 Main building script: debian/rules . 23

4.9.1 debian/rules and DEB_BUILD_OPTIONS . 26
4.9.2 debian/rules and Rules-Requires-Root . 27

4.10 Variable substitutions: debian/substvars . 28
4.11 Upstream source location: debian/watch . 28
4.12 Generated files list: debian/files . 28
4.13 Embedded code copies . 29
4.14 Source package handling: debian/README.source . 29
4.15 Reproducibility . 29
4.16 Missing sources: debian/missing-sources . 30
4.17 Vendor-specific patch series . 30

5 Control files and their fields 31
5.1 Syntax of control files . 31
5.2 Debian source package template control files – debian/control 32
5.3 Debian binary package control files – DEBIAN/control . 33
5.4 Debian source package control files – .dsc . 34
5.5 Debian upload changes control files – .changes . 34
5.6 List of fields . 35

5.6.1 Source . 35
5.6.2 Maintainer . 35
5.6.3 Uploaders . 35
5.6.4 Changed-By . 36
5.6.5 Section . 36
5.6.6 Priority . 36
5.6.7 Package . 36
5.6.8 Architecture . 36
5.6.9 Essential . 37
5.6.10 Package interrelationship fields: Depends, Pre-Depends, Recommends, Suggests,

Breaks, Conflicts, Provides, Replaces, Enhances 37
5.6.11 Standards-Version . 37
5.6.12 Version . 37

5.6.12.1 Epochs should be used sparingly . 38
5.6.12.2 Special version conventions . 39

5.6.13 Description . 40
5.6.14 Distribution . 41
5.6.15 Date . 41
5.6.16 Format . 41
5.6.17 Urgency . 41
5.6.18 Changes . 42
5.6.19 Binary . 42
5.6.20 Installed-Size . 42
5.6.21 Files . 42
5.6.22 Closes . 43
5.6.23 Homepage . 43
5.6.24 Checksums-Sha1 and Checksums-Sha256 . 43

ii

5.6.25 DM-Upload-Allowed . 44
5.6.26 Version Control System (VCS) fields . 44
5.6.27 Package-List . 45
5.6.28 Package-Type . 45
5.6.29 Dgit . 45
5.6.30 Testsuite . 45
5.6.31 Rules-Requires-Root . 45

5.6.31.1 Remarks . 46
5.6.31.2 Definition of the keywords . 46
5.6.31.3 Provided keywords . 46

5.7 User-defined fields . 47
5.8 Obsolete fields . 47

5.8.1 DM-Upload-Allowed . 47

6 Package maintainer scripts and installation procedure 49
6.1 Introduction to package maintainer scripts . 49
6.2 Maintainer scripts idempotency . 49
6.3 Controlling terminal for maintainer scripts . 50
6.4 Exit status . 50
6.5 Summary of ways maintainer scripts are called . 50
6.6 Details of unpack phase of installation or upgrade . 52
6.7 Details of configuration . 55
6.8 Details of removal and/or configuration purging . 55

7 Declaring relationships between packages 57
7.1 Syntax of relationship fields . 57
7.2 Binary Dependencies - Depends, Recommends, Suggests, Enhances, Pre-Depends 58
7.3 Packages which break other packages - Breaks . 60
7.4 Conflicting binary packages - Conflicts . 61
7.5 Virtual packages - Provides . 62
7.6 Overwriting files and replacing packages - Replaces . 63

7.6.1 Overwriting files in other packages . 63
7.6.2 Replacing whole packages, forcing their removal . 63

7.7 Relationships between source and binary packages - Build-Depends, Build-Depends-Indep,
Build-Depends-Arch, Build-Conflicts, Build-Conflicts-Indep, Build-Conflicts-Arch 64

7.8 Additional source packages used to build the binary - Built-Using 65

8 Shared libraries 67
8.1 Run-time shared libraries . 67

8.1.1 ldconfig . 68
8.2 Shared library support files . 69
8.3 Static libraries . 69
8.4 Development files . 69
8.5 Dependencies between the packages of the same library . 70
8.6 Dependencies between the library and other packages . 70

8.6.1 Generating dependencies on shared libraries . 70
8.6.2 Shared library ABI changes . 71
8.6.3 The symbols system . 72

8.6.3.1 The symbols files present on the system . 72
8.6.3.2 The symbols File Format . 73
8.6.3.3 Providing a symbols file . 74

8.6.4 The shlibs system . 75
8.6.4.1 The shlibs files present on the system . 75
8.6.4.2 The shlibs File Format . 75

iii

8.6.4.3 Providing a shlibs file . 76

9 The Operating System 77
9.1 File system hierarchy . 77

9.1.1 File System Structure . 77
9.1.2 Site-specific programs . 78
9.1.3 The system-wide mail directory . 79
9.1.4 /run and /run/lock . 79

9.2 Users and groups . 79
9.2.1 Introduction . 79
9.2.2 UID and GID classes . 80
9.2.3 Non-existent home directories . 80

9.3 Starting system services . 81
9.3.1 Introduction . 81
9.3.2 Writing the scripts . 81
9.3.3 Interfacing with init systems . 82

9.3.3.1 Managing the links . 83
9.3.3.2 Running init scripts . 83

9.3.4 Boot-time initialization . 84
9.3.5 Example . 84

9.4 Console messages from init.d scripts . 84
9.5 Cron jobs . 84

9.5.1 Cron job file names . 85
9.6 Menus . 85
9.7 Multimedia handlers . 86

9.7.1 Registration of media type handlers with desktop entries . 86
9.7.2 Registration of media type handlers with mailcap entries . 86
9.7.3 Providing media types to files . 86

9.8 Keyboard configuration . 87
9.9 Environment variables . 88
9.10 Registering Documents using doc-base . 88
9.11 Alternate init systems . 88

9.11.1 Event-based boot with upstart . 88
9.12 Signaling that a reboot is required . 88

10 Files 89
10.1 Binaries . 89
10.2 Libraries . 90
10.3 Shared libraries . 91
10.4 Scripts . 91
10.5 Symbolic links . 92
10.6 Device files . 93
10.7 Configuration files . 93

10.7.1 Definitions . 93
10.7.2 Location . 93
10.7.3 Behavior . 94
10.7.4 Sharing configuration files . 94
10.7.5 User configuration files (“dotfiles”) . 95

10.8 Log files . 95
10.9 Permissions and owners . 96

10.9.1 The use of dpkg-statoverride . 97
10.10 File names . 98

11 Customized programs 99

iv

11.1 Architecture specification strings . 99
11.1.1 Architecture wildcards . 99

11.2 Daemons . 99
11.3 Using pseudo-ttys and modifying wtmp, utmp and lastlog . 99
11.4 Editors and pagers . 100
11.5 Web servers and applications . 100
11.6 Mail transport, delivery and user agents . 101
11.7 News system configuration . 102
11.8 Programs for the X Window System . 102

11.8.1 Providing X support and package priorities . 102
11.8.2 Packages providing an X server . 102
11.8.3 Packages providing a terminal emulator . 103
11.8.4 Packages providing a window manager . 103
11.8.5 Packages providing fonts . 103
11.8.6 Application defaults files . 104
11.8.7 Installation directory issues . 105

11.9 Perl programs and modules . 105
11.10 Emacs lisp programs . 105
11.11 Games . 105

12 Documentation 107
12.1 Manual pages . 107
12.2 Info documents . 108
12.3 Additional documentation . 108
12.4 Preferred documentation formats . 109
12.5 Copyright information . 109

12.5.1 Machine-readable copyright information . 110
12.6 Examples . 110
12.7 Changelog files and release notes . 110

13 Introduction and scope of these appendices 113

14 Binary packages (from old Packaging Manual) 115
14.1 Creating package files - dpkg-deb . 115
14.2 Binary package metadata files . 116
14.3 The binary package control file: control . 116
14.4 Time Stamps . 116

15 Source packages (from old Packaging Manual) 117
15.1 Tools for processing source packages . 117

15.1.1 dpkg-source - packs and unpacks Debian source packages 117
15.1.2 dpkg-buildpackage - overall package-building control script 117
15.1.3 dpkg-gencontrol - generates binary package control files 118
15.1.4 dpkg-shlibdeps - calculates shared library dependencies 118
15.1.5 dpkg-distaddfile - adds a file to debian/files . 118
15.1.6 dpkg-genchanges - generates a .changes upload control file 118
15.1.7 dpkg-parsechangelog - produces parsed representation of a changelog 118
15.1.8 dpkg-architecture - information about the build and host system 119

15.2 The Debian package source tree . 119
15.2.1 debian/rules - the main building script . 119
15.2.2 debian/substvars and variable substitutions . 119
15.2.3 debian/files . 119
15.2.4 debian/tmp . 119

15.3 Source packages as archives . 119
15.4 Unpacking a Debian source package without dpkg-source . 120

v

15.4.1 Restrictions on objects in source packages . 120

16 Control files and their fields (from old Packaging Manual) 123
16.1 Syntax of control files . 123
16.2 List of fields . 123

16.2.1 Filename and MSDOS-Filename . 123
16.2.2 Size and MD5sum . 123
16.2.3 Status . 123
16.2.4 Config-Version . 124
16.2.5 Conffiles . 124
16.2.6 Obsolete fields . 124

17 Configuration file handling (from old Packaging Manual) 125
17.1 Automatic handling of configuration files by dpkg . 125
17.2 Fully-featured maintainer script configuration handling . 126

18 Alternative versions of an interface - update-alternatives (from old Packaging Manual) 127

19 Diversions - overriding a package’s version of a file (from old Packaging Manual) 129

20 Debian Policy changes process 131
20.1 Introduction . 131
20.2 Change Goals . 131
20.3 Current Process . 131

20.3.1 State A: More information required . 132
20.3.2 State B: Discussion . 132
20.3.3 State C: Proposal . 132
20.3.4 State D: Wording proposed . 132
20.3.5 State E: Seconded . 132
20.3.6 State F: Accepted . 133
20.3.7 State G: Reject . 133

20.4 Other Tags . 133

21 Maintainer script flowcharts 135

22 Upgrading checklist 141
22.1 About the checklist . 141
22.2 Version 4.7.0 . 141
22.3 Version 4.6.2 . 142
22.4 Version 4.6.1 . 142
22.5 Version 4.6.0 . 142
22.6 Version 4.5.1 . 143
22.7 Version 4.5.0 . 143
22.8 Version 4.4.1 . 143
22.9 Version 4.4.0 . 144
22.10 Version 4.3.0 . 144
22.11 Version 4.2.1 . 145
22.12 Version 4.2.0 . 145
22.13 Version 4.1.5 . 145
22.14 Version 4.1.4 . 146
22.15 Version 4.1.3 . 146
22.16 Version 4.1.2 . 147
22.17 Version 4.1.1 . 147
22.18 Version 4.1.0 . 147
22.19 Version 4.0.1 . 148

vi

22.20 Version 4.0.0 . 148
22.21 Version 3.9.8 . 150
22.22 Version 3.9.7 . 150
22.23 Version 3.9.6 . 151
22.24 Version 3.9.5 . 151
22.25 Version 3.9.4 . 152
22.26 Version 3.9.3 . 153
22.27 Version 3.9.2 . 154
22.28 Version 3.9.1 . 155
22.29 Version 3.9.0 . 156
22.30 Version 3.8.4 . 157
22.31 Version 3.8.3 . 157
22.32 Version 3.8.2 . 158
22.33 Version 3.8.1 . 158
22.34 Version 3.8.0 . 159
22.35 Version 3.7.3 . 160
22.36 Version 3.7.2.2 . 161
22.37 Version 3.7.2 . 161
22.38 Version 3.7.1 . 161
22.39 Version 3.7.0 . 162
22.40 Version 3.6.2 . 162
22.41 Version 3.6.1 . 162
22.42 Version 3.6.0 . 163
22.43 Version 3.5.10 . 163
22.44 Version 3.5.9 . 163
22.45 Version 3.5.8 . 164
22.46 Version 3.5.7 . 164
22.47 Version 3.5.6 . 165
22.48 Version 3.5.5 . 165
22.49 Version 3.5.4 . 166
22.50 Version 3.5.3 . 166
22.51 Version 3.5.2 . 166
22.52 Version 3.5.1 . 166
22.53 Version 3.5.0 . 166
22.54 Version 3.2.1.1 . 166
22.55 Version 3.2.1 . 167
22.56 Version 3.2.0 . 167
22.57 Version 3.1.1 . 168
22.58 Version 3.1.0 . 168
22.59 Version 3.0.1 . 168
22.60 Version 3.0.0 . 169
22.61 Version 2.5.0 . 169
22.62 Version 2.4.1 . 170
22.63 Version 2.4.0 . 170
22.64 Version 2.3.0 . 171
22.65 Version 2.2.0 . 171
22.66 Version 2.1.3 . 171
22.67 Version 2.1.2 . 171
22.68 Version 2.1.1 . 172
22.69 Version 2.1.0 . 172

23 License 173

Index 175

vii

viii

Debian Policy Manual, Release 4.7.0.2

This manual describes the policy requirements for the Debian distribution. This includes the structure and contents of
the Debian archive and several design issues of the operating system, as well as technical requirements that each package
must satisfy to be included in the distribution.

This is Debian Policy version 4.7.0.2, released on 2025-01-03.

CONTENTS 1

Debian Policy Manual, Release 4.7.0.2

2 CONTENTS

CHAPTER

ONE

ABOUT THIS MANUAL

1.1 Scope

This manual describes the policy requirements for the Debian distribution. This includes the structure and contents of
the Debian archive and several design issues of the operating system, as well as technical requirements that each package
must satisfy to be included in the distribution.

This manual also describes Debian policy as it relates to creating Debian packages. It is not a tutorial on how to build
packages, nor is it exhaustive where it comes to describing the behavior of the packaging system. Instead, this manual
attempts to define the interface to the package management system with which the developers must be conversant.1

This manual cannot and does not prohibit every possible bug or undesirable behaviour. The fact that something is not
prohibited by Debian policy does not mean that it is not a bug, let alone that it is desirable. Questions not covered by
policy should be evaluated on their merits.

The footnotes present in this manual are merely informative, and are not part of Debian policy itself.

The appendices to this manual are not necessarily normative, either. Please see Introduction and scope of these appendices
for more information.

In the normative part of this manual, the following terms are used to describe the importance of each statement:2

• The termsmust andmust not, and the adjectives required and prohibited, denote strong requirements. Packages that
do not conform to these requirements will generally not be considered acceptable for the Debian distribution. These
statements correspond to the critical, grave, and serious bug severities (normally serious). They are collectively
called Policy requirements.

• The terms should and should not, and the adjective recommended, denote best practices. Non-conformance with
these guidelines will generally be considered a bug, but will not necessarily render a package unsuitable for dis-
tribution. These statements correspond to bug severities of important, normal, and minor. They are collectively
called Policy recommendations.

• The adjectives encouraged and discouraged denote places where Policy offers advice to maintainers, but maintainers
are free to follow or not follow that advice. Non-conformance with this advice is normally not considered a bug;
if a bug seems worthwhile, normally it would have a severity of wishlist. These statements are collectively called
Policy advice.

1 Informally, the criteria used for inclusion is that the material meet one of the following requirements:

Standard interfaces
Thematerial presented represents an interface to the packaging system that is mandated for use, and is used by, a significant number of packages,
and therefore should not be changed without peer review. Package maintainers can then rely on this interface not changing, and the package
management software authors need to ensure compatibility with this interface definition. (Control file and changelog file formats are examples.)

Chosen Convention
If there are a number of technically viable choices that can be made, but one needs to select one of these options for inter-operability. The
version number format is one example.

Please note that these are not mutually exclusive; selected conventions often become parts of standard interfaces.
2 Compare RFC 2119. Note, however, that these words are used in a different way in this document.

3

Debian Policy Manual, Release 4.7.0.2

• The term may and the adjective optional are used to clarify cases where it may otherwise appear that Policy is
specifying a requirement or recommendation. In those cases, these words describe decisions that are truly optional
and at the maintainer’s discretion.

The Release Team can, at their discretion, downgrade a Policy requirement to a Policy recommendation for a given release
of the Debian distribution. This may be done for only a specific package or for the archive as a whole. This provision
is intended to provide flexibility to balance the quality standards of the distribution against the release schedule and the
importance of making a stable release.

Much of the information presented in this manual will be useful even when building a package which is to be distributed
in some other way or is intended for local use only.

udebs (stripped-down binary packages used by the Debian Installer) and source packages that produce only udebs do not
comply with all of the requirements discussed here. See the Debian Installer internals manual for more information about
them.

1.2 New versions of this document

This manual is distributed via the Debian package debian-policy.

The current version of this document is also available from the Debian web mirrors at https://www.debian.org/doc/
debian-policy/. Also available from the same directory are several other formats: policy.epub, policy.txt and policy.pdf.
Included in both the same directory and in the debian-policy package is a standalone copy of Upgrading checklist, which
indicates policy changes between versions of this document.

1.3 Authors and Maintainers

1.3.1 Early history

Originally called “Debian GNU/Linux Policy Manual”, this manual was initially written in 1996 by Ian Jackson. It was
revised on November 27th, 1996 by David A. Morris. Christian Schwarz added new sections on March 15th, 1997, and
reworked/restructured it in April-July 1997. Christoph Lameter contributed the “Web Standard”. Julian Gilbey largely
restructured it in 2001. Since September 1998, changes to the contents of this document have been co-ordinated by
means of the debian-policy mailing list

1.3.2 Current process

The Policy Editors are DPL delegates with responsibility for the contents of this document (see the Debian Constitution
for the meaning of “DPL delegate”). However, the Policy Editors further delegate their editorial power to a process of
establishing project member consensus on the debian-policy mailing list, as described in Debian Policy changes process.
The current Policy Editors are:

1. Russ Allbery

2. Sean Whitton

1.3.3 Improvements

While the authors of this document have tried hard to avoid typos and other errors, these do still occur. If you discover
an error in this manual or if you want to give any comments, suggestions, or criticisms please send an email to the Debian
Policy Mailing List, debian-policy@lists.debian.org, or submit a bug report against the debian-policy package.

Please do not try to reach the individual authors or maintainers of the Policy Manual regarding changes to the Policy.

New techniques and functionality are generally implemented in the Debian archive (long) before they are detailed in this
document. This is not considered to be a problem: there is a consensus in the Debian Project that the task of keeping this
document up-to-date should never block making improvements to Debian. Nevertheless, it is better to submit patches

4 Chapter 1. About this manual

https://d-i.debian.org/doc/internals/ch03.html
https://packages.debian.org/debian-policy
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/policy.epub
https://www.debian.org/doc/debian-policy/policy.txt
https://www.debian.org/doc/debian-policy/policy.pdf
mailto:debian-policy@lists.debian.org
mailto:debian-policy@lists.debian.org

Debian Policy Manual, Release 4.7.0.2

to this document sooner rather than later. This reduces the amount of work that is needed on the part of others to get
themselves up-to-speed on new best practices.

1.4 Related documents

There are several other documents other than this Policy Manual that are necessary to fully understand some Debian
policies and procedures.

The external “sub-policy” documents are referred to in:

• File System Structure

• Virtual packages

• Menus

• Perl programs and modules

• Prompting in maintainer scripts

• Emacs lisp programs

In addition to those, which carry the weight of policy, there is the Debian Developer’s Reference. This document describes
procedures and resources for Debian developers, but it is not normative; rather, it includes things that don’t belong in the
Policy, such as best practices for developers.

The Developer’s Reference is available in the developers-reference package. It’s also available from the Debian web
mirrors at https://www.debian.org/doc/developers-reference/.

Finally, a specification for machine-readable copyright files is maintained as part of the debian-policy package using the
same procedure as the other policy documents. Use of this format is optional.

1.5 Definitions

The following terms are used in this Policy Manual:

ASCII
The character encoding specified by ANSI X3.4-1986 and its predecessor standards, referred to in MIME as US-
ASCII, and corresponding to an encoding in eight bits per character of the first 128 Unicode characters, with the
eighth bit always zero.

upstream
The source of software that is being packaged, or the portion of a software package that originates from outside of
Debian. For example, suppose Alice writes and releases a free software package, and then Bob creates a Debian
package of that software package. Alice is the upstream maintainer (sometimes abbreviated as upstream) of the
package, Alice’s releases are the upstream releases, and the version number she puts on a release is the upstream
version. Bob may make Debian-specific modifications to the package, and then later send those modifications
upstream to be incorporated in Alice’s releases.

The packager and upstream developer may be the same person. For example, Alice may choose to package her
own software for Debian. However, this manual still distinguishes between the role of upstream and the role of
Debian packager, even when the same person is filling both of those roles, since they have some implications for
the details of packaging.

UTF-8
The transformation format (sometimes called encoding) of Unicode defined by RFC 3629. UTF-8 has the useful
property of having ASCII as a subset, so any text encoded in ASCII is trivially also valid UTF-8.

1.4. Related documents 5

https://www.debian.org/doc/developers-reference/
http://www.unicode.org/
http://www.unicode.org/
https://www.rfc-editor.org/rfc/rfc3629.txt

Debian Policy Manual, Release 4.7.0.2

1.6 Translations

When translations of this document into languages other than English disagree with the English text, the English text
takes precedence.

6 Chapter 1. About this manual

CHAPTER

TWO

THE DEBIAN ARCHIVE

The Debian system is maintained and distributed as a collection of packages. Since there are so many of them (currently
well over 15000), they are split into sections and given priorities to simplify the handling of them.

The effort of the Debian project is to build a free operating system, but not every package we want to make accessible is
free in our sense (see the Debian Free Software Guidelines, below), or may be imported/exported without restrictions.
Thus, the archive is split into areas1 based on their licenses and other restrictions.

The aims of this are:

• to allow us to make as much software available as we can

• to allow us to encourage everyone to write free software, and

• to allow us to make it easy for people to produce CD-ROMs of our system without violating any licenses, im-
port/export restrictions, or any other laws.

The main archive area forms the Debian distribution.

Packages in the other archive areas (non-free-firmware, contrib, non-free) are not considered to be part of the
Debian distribution, although we support their use and provide infrastructure for them (such as our bug-tracking system
and mailing lists). This Debian Policy Manual applies to these packages as well.

2.1 The Debian Free Software Guidelines

The Debian Free Software Guidelines (DFSG) form our definition of “free software”. These are:

1. Free Redistribution
The license of a Debian component may not restrict any party from selling or giving away the software as
a component of an aggregate software distribution containing programs from several different sources. The
license may not require a royalty or other fee for such sale.

2. Source Code
The program must include source code, and must allow distribution in source code as well as compiled form.

3. Derived Works
The license must allow modifications and derived works, and must allow them to be distributed under the
same terms as the license of the original software.

4. Integrity of The Author’s Source Code
The license may restrict source-code from being distributed in modified form only if the license allows the
distribution of “patch files” with the source code for the purpose of modifying the program at build time.
The license must explicitly permit distribution of software built from modified source code. The license may
require derived works to carry a different name or version number from the original software. (This is a

1 The Debian archive software uses the term “component” internally and in the Release file format to refer to the division of an archive. The Debian
Social Contract simply refers to “areas.” This document uses terminology similar to the Social Contract.

7

Debian Policy Manual, Release 4.7.0.2

compromise. The Debian Project encourages all authors to not restrict any files, source or binary, from being
modified.)

5. No Discrimination Against Persons or Groups
The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor
The license must not restrict anyone from making use of the program in a specific field of endeavor. For
example, it may not restrict the program from being used in a business, or from being used for genetic
research.

7. Distribution of License
The rights attached to the program must apply to all to whom the program is redistributed without the need
for execution of an additional license by those parties.

8. License Must Not Be Specific to Debian
The rights attached to the program must not depend on the program’s being part of a Debian system. If the
program is extracted from Debian and used or distributed without Debian but otherwise within the terms of
the program’s license, all parties to whom the program is redistributed must have the same rights as those
that are granted in conjunction with the Debian system.

9. License Must Not Contaminate Other Software
The license must not place restrictions on other software that is distributed along with the licensed software.
For example, the license must not insist that all other programs distributed on the same medium must be free
software.

10. Example Licenses
The “GPL,” “BSD,” and “Artistic” licenses are examples of licenses that we consider free.

2.2 Archive areas

2.2.1 The main archive area

The main archive area comprises the Debian distribution. Only the packages in this area are considered part of the
distribution. None of the packages in the main archive area require software outside of that area to function. Anyone
may use, share, modify and redistribute the packages in this archive area freely2.

Every package in main must comply with the DFSG (Debian Free Software Guidelines).3

In addition, the packages in main

• must not require or recommend a package outside of main for compilation or execution (thus, the package
must not declare a Pre-Depends, Depends, Recommends, Build-Depends, Build-Depends-Indep, or
Build-Depends-Arch relationship on a non-main package unless that package is only listed as a non-default
alternative for a package in main),

• must not be so buggy that we refuse to support them, and

• must meet all policy requirements presented in this manual.

If a source package is in the main archive area, then at least one of its binary packages must be in the main archive area,
and each of the remaining packages must be in either the main or contrib archive area. Each binary package’s archive
area is indicated by its Section field: see Sections.

Source packages in main with a mixture of main and contrib binary packages are more complex for archive tooling to
handle, and therefore should be limited to situations where it would be inconvenient to split the source package. If it is
straightforward to split the source package into a main part and a contrib part that are built separately, then those parts
should be represented as separate source packages.

2 See What Does Free Mean? for more about what we mean by free software.
3 Debian’s FTP Masters publish a REJECT-FAQ which details the project’s current working interpretation of the DFSG.

8 Chapter 2. The Debian Archive

https://www.debian.org/intro/free
https://ftp-master.debian.org/REJECT-FAQ.html

Debian Policy Manual, Release 4.7.0.2

When a main source package has a mixture of main and contrib binary packages, the source package and the main
binary packages must follow the requirements for main packages, but the contrib binary packages may follow the weaker
requirements for contrib packages. In particular, source packages inmainmust not have build dependencies outsidemain,
but the contrib binary packages may have runtime dependencies outside main.

2.2.2 The non-free-firmware archive area

The non-free-firmware archive area contains packages providing firmware needed to initialize, use or keep updated hard-
ware required by our users, typically necessary for important functions to be available (i.e. wireless network connectivity)
or for fixing security defects in hardware (i.e. CPU microcode updates). Packages in this archive may not comply with
all of the policy requirements in this manual due to lack of source code availability, restrictions on modification or other
limitations.

Packages in non-free-firmware

• must not be so buggy that we refuse to support them, and

• must meet all policy requiremens presented in this manual that it is possible for them to meet.4

2.2.3 The contrib archive area

The contrib archive area contains supplemental packages intended to work with the Debian distribution, but which require
software outside of the distribution to either build or function.

Every package in contrib must comply with the DFSG.

In addition, the packages in contrib

• must not be so buggy that we refuse to support them, and

• must meet all policy requirements presented in this manual.

Examples of packages which would be included in contrib are:

• free packages which require contrib, non-free packages or packages which are not in our archive at all for compi-
lation or execution, and

• wrapper packages or other sorts of free accessories for non-free programs.

If a source package is in the contrib archive area, then each of the binary packages that it produces must also be in the
contrib archive area.

2.2.4 The non-free archive area

The non-free archive area contains supplemental packages intended to work with the Debian distribution that do not
comply with the DFSG or have other problems that make their distribution problematic. They may not comply with all
of the policy requirements in this manual due to restrictions on modifications or other limitations.

Packages must be placed in non-free if they are not compliant with the DFSG or are encumbered by patents or other legal
issues that make their distribution problematic.

In addition, the packages in non-free

• must not be so buggy that we refuse to support them, and

• must meet all policy requirements presented in this manual that it is possible for them to meet.4

If a source package is in the non-free archive area, then each of the binary packages that it produces must also be in the
non-free archive area.

4 It is possible that there are policy requirements which the package is unable to meet, for example, if the source is unavailable. These situations
will need to be handled on a case-by-case basis.

2.2. Archive areas 9

Debian Policy Manual, Release 4.7.0.2

2.3 Copyright considerations

Every package must be accompanied by a verbatim copy of its distribution license(s) in the file /usr/share/doc/
PACKAGE/copyright.

The copyright information for files in a package must be copied verbatim into /usr/share/doc/PACKAGE/

copyright, when all of the following hold:

1. the distribution license for those files requires that copyright information be included in all copies and/or binary
distributions;

2. the files are shipped in the binary package, either in source or compiled form; and

3. the form in which the files are present in the binary package does not include a plain text version of their copyright
notices.

Thus, the copyright information for files in the source package which are only part of its build process, such as autotools
files, need not be included in /usr/share/doc/PACKAGE/copyright, because those files do not get installed into the
binary package. Similarly, plain text files which include their own copyright information and are installed into the binary
package unmodified need not have that copyright information copied into /usr/share/doc/PACKAGE/copyright

However, the copyright notices for any files which are compiled into the object code shipped in the binary package must
all be included in /usr/share/doc/PACKAGE/copyright when the license requires that copyright information be
included in all copies and/or binary distributions, as most do.5

See Copyright information for further details.

We reserve the right to restrict files from being included anywhere in our archives if

• their use or distribution would break a law,

• there is an ethical conflict in their distribution or use,

• we would have to sign a license for them, or

• their distribution would conflict with other project policies.

Programs whose authors encourage the user to make donations are fine for the main distribution, provided that the authors
do not claim that not donating is immoral, unethical, illegal or something similar; in such a case they must go in non-free.

Packages whose copyright permission notices (or patent problems) do not even allow redistribution of binaries only, and
where no special permission has been obtained, must not be placed on the Debian FTP site and its mirrors at all.

Note that under international copyright law (this applies in the United States, too), no distribution or modification of a
work is allowed without an explicit notice saying so. Therefore a program without a copyright notice is copyrighted and
you may not do anything to it without risking being sued! Likewise if a program has a copyright notice but no statement
saying what is permitted then nothing is permitted.

Many authors are unaware of the problems that restrictive copyrights (or lack of copyright notices) can cause for the
users of their supposedly-free software. It is often worthwhile contacting such authors diplomatically to ask them to
modify their license terms. However, this can be a politically difficult thing to do and you should ask for advice on the
debian-legal mailing list first, as explained below.

When in doubt about a copyright, sendmail to debian-legal@lists.debian.org. Be prepared to provide us with the copyright
statement. Software covered by theGPL, public domain software and BSD-like copyrights are safe; be wary of the phrases
“commercial use prohibited” and “distribution restricted”.

5 Licenses that are not thought to require the copying of all copyright notices into Debian’s copyright file include Apache-2.0 and the Boost Software
License, version 1.0. Final determination as to whether a package’s copyright file is sufficient lies with the FTP team.
To help find copyright notices you need to copy, you might try grep --color=always -Eir '(copyright|©)' * | less -R

10 Chapter 2. The Debian Archive

mailto:debian-legal@lists.debian.org

Debian Policy Manual, Release 4.7.0.2

2.4 Sections

The packages in the archive areas main, non-free-firmware, contrib and non-free are grouped further into sections to
simplify handling.

The archive area and section for each package should be specified in the package’s Section control field (see Section).
However, the maintainer of the Debian archive may override this selection to ensure the consistency of the Debian
distribution. The Section field should be of the form:

• section if the package is in the main archive area,

• area/section if the package is in the non-free-firmware, contrib or non-free archive areas.

The Debian archive maintainers provide the authoritative list of sections. At present, they are: admin, cli-mono, comm,
database, debug, devel, doc, editors, education, electronics, embedded, fonts, games, gnome, gnu-r, gnustep, graphics,
hamradio, haskell, httpd, interpreters, introspection, java, javascript, kde, kernel, libdevel, libs, lisp, localization, mail,
math, metapackages, misc, net, news, ocaml, oldlibs, otherosfs, perl, php, python, ruby, rust, science, shells, sound, tasks,
tex, text, utils, vcs, video, web, x11, xfce, zope. The additional section debian-installer contains special packages used by
the installer and is not used for normal Debian packages.

For more information about the sections and their definitions, see the list of sections in unstable.

2.5 Priorities

Each package must have a priority value, which is set in the metadata for the Debian archive and is also included in
the package’s control files (see Priority). This information is used to control which packages are included in standard or
minimal Debian installations.

Most Debian packages will have a priority of optional. Priority levels other than optional are only used for packages
that should be included by default in a standard installation of Debian.

The priority of a package is determined solely by the functionality it provides directly to the user. The priority of a
package should not be increased merely because another higher-priority package depends on it; instead, the tools used to
construct Debian installations will correctly handle package dependencies. In particular, this means that C-like libraries
will almost never have a priority above optional, since they do not provide functionality directly to users. However,
as an exception, the maintainers of Debian installers may request an increase of the priority of a package to resolve
installation issues and ensure that the correct set of packages is included in a standard or minimal install.

The following priority levels are recognized by the Debian package management tools.

required

Packages which are necessary for the proper functioning of the system (usually, this means that dpkg functionality
depends on these packages). Removing a required package may cause your system to become totally broken and
you may not even be able to use dpkg to put things back, so only do so if you know what you are doing.

Systems with only the required packages installed have at least enough functionality for the sysadmin to boot the
system and install more software.

important

Important programs, including those which one would expect to find on any Unix-like system. If the expectation
is that an experienced Unix person who found it missing would say “What on earth is going on, where is foo?”,
it must be an important package.6 Other packages without which the system will not run well or be usable
must also have priority important. This does not include Emacs, the X Window System, TeX or any other large
applications. The important packages are just a bare minimum of commonly-expected and necessary tools.

standard

These packages provide a reasonably small but not too limited character-mode system. This is what will be installed
by default if the user doesn’t select anything else. It doesn’t include many large applications.

6 This is an important criterion because we are trying to produce, amongst other things, a free Unix.

2.4. Sections 11

https://packages.debian.org/unstable/

Debian Policy Manual, Release 4.7.0.2

Two packages that both have a priority of standard or higher must not conflict with each other.

optional

This is the default priority for the majority of the archive. Unless a package should be installed by default on
standard Debian systems, it should have a priority of optional. Packages with a priority of optional may
conflict with each other.

extra

This priority is deprecated. Use the optional priority instead. This priority should be treated as equivalent to
optional.

The extra priority was previously used for packages that conflicted with other packages and packages that were
only likely to be useful to people with specialized requirements. However, this distinction was somewhat arbitrary,
not consistently followed, and not useful enough to warrant the maintenance effort.

12 Chapter 2. The Debian Archive

CHAPTER

THREE

BINARY PACKAGES

The Debian distribution is based on the Debian package management system, called dpkg. Thus, all packages in the
Debian distribution must be provided in the .deb file format.

A .deb package contains two sets of files: a set of files to install on the system when the package is installed, and a
set of files that provide additional metadata about the package or which are executed when the package is installed or
removed. This second set of files is called package metadata files. Among those files are the package maintainer scripts
and control, the binary package control file that contains the control fields for the package. Other package metadata
files include symbols or shlibs used to store shared library dependency information and the conffiles file that lists the
package’s configuration files (described in Configuration files).

There is unfortunately a collision of terminology here between control information files and files in the Debian control
file format. Throughout this document, a control file refers to a file in the Debian control file format. These files are
documented in Control files and their fields. Only files referred to specifically as package metadata files are the files
included in the package metadata member (called control.tar) of the .deb file format used by binary packages.
Most package metadata files are not in the Debian control file format.

3.1 The package name

Every package must have a name that’s unique within the Debian archive.

The package name is included in the control field Package, the format of which is described in Package. The package
name is also included as a part of the file name of the .deb file.

3.1.1 Packages with potentially offensive content

As a maintainer you should make a judgement about whether the contents of a package is appropriate to include, whether
it needs any kind of content warning, and whether some parts should be split out into a separate package (so that users
who want to avoid certain parts can do so). In making these decisions you should take into account the project’s views as
expressed in our Diversity Statement.

If you split out (potentially) offensive or disturbing material into a separate package, you should usually mark this
in the package name by adding -offensive. For example, cowsay vs cowsay-offensive. In this situation the
-offensive package can be Suggested by the core package(s), but should not be Recommended or Depended on.

3.2 The version of a package

Every package has a version number recorded in its Version control file field, described in Version.

The package management system imposes an ordering on version numbers, so that it can tell whether packages are being
up- or downgraded and so that package system front end applications can tell whether a package it finds available is newer
than the one installed on the system. The version number format has the most significant parts (as far as comparison is
concerned) at the beginning.

13

Debian Policy Manual, Release 4.7.0.2

If an upstream package has problematic version numbers they should be converted to a sane form for use in the Version
field.

3.2.1 Version numbers based on dates

In general, Debian packages should use the same version numbers as the upstream sources. However, upstream version
numbers based on some date formats (sometimes used for development or “snapshot” releases) will not be ordered cor-
rectly by the package management software. For example, dpkg will consider “96May01” to be greater than “96Dec24”.

To prevent having to use epochs for every new upstream version, the date-based portion of any upstream version number
should be given in a way that sorts correctly: four-digit year first, followed by a two-digit numeric month, followed by a
two-digit numeric date, possibly with punctuation between the components.

Native Debian packages (i.e., packages which have been written especially for Debian) whose version numbers include
dates should also follow these rules. If punctuation is desired between the date components, remember that hyphen (-)
cannot be used in native version numbers. Period (.) is normally a good choice.

3.2.2 Uniqueness of version numbers

The part of the version number after the epoch must not be reused for a version of the package with different contents
once the package has been accepted into the archive, even if the version of the package previously using that part of the
version number is no longer present in any archive suites.

This uniqueness requirement applies to the version numbers of source packages and of binary packages, even if the source
package producing a given binary package changes. Thus the version numbers which a binary package must not reuse
includes the version numbers of any versions of the binary package ever accepted into the archive, under any source
package.

Additionally, for non-native packages, the upstream version must not be reused for different upstream source code, so
that for each source package name and upstream version number there exists exactly one original source archive contents
(see Files).

The reason for these restrictions is as follows. Epochs are not included in the names of the files that compose source pack-
ages, or in the filenames of binary packages, so reusing a version number, even if the epoch differs, results in identically
named files with different contents. This can cause various problems.

If you find yourself wanting to reuse the part of a version number after the epoch, you can just increment the Debian
revision, which doesn’t need to start at 1 or be consecutive.

3.3 The maintainer of a package

Every package must have a maintainer, except for orphaned packages as described below. The maintainer may be one
person or a group of people reachable from a common email address, such as a mailing list. The maintainer is responsible
for maintaining the Debian packaging files, evaluating and responding appropriately to reported bugs, uploading new
versions of the package (either directly or through a sponsor), ensuring that the package is placed in the appropriate
archive area and included in Debian releases as appropriate for the stability and utility of the package, and requesting
removal of the package from the Debian distribution if it is no longer useful or maintainable.

The maintainer must be specified in the Maintainer control field with their correct name and a working email address.
The email address given in the Maintainer control field must accept mail from those role accounts in Debian used to
send automated mails regarding the package. This includes non-spam mail from the bug-tracking system, all mail from
the Debian archive maintenance software, and other role accounts or automated processes that are commonly agreed on
by the project.1 If one person or team maintains several packages, they should use the same form of their name and email
address in the Maintainer fields of those packages.

1 A sample implementation of such a whitelist written for the Mailman mailing list management software is used for mailing lists hosted by https:
//alioth-lists.debian.net/.

14 Chapter 3. Binary packages

https://alioth-lists.debian.net/
https://alioth-lists.debian.net/

Debian Policy Manual, Release 4.7.0.2

The format of the Maintainer control field is described in Maintainer.

If the maintainer of the package is a team of people with a shared email address, the Uploaders control field must be
present and must contain at least one human with their personal email address. See Uploaders for the syntax of that field.

An orphaned package is one with no current maintainer. Orphaned packages should have their Maintainer control field
set to Debian QA Group <packages@qa.debian.org>. These packages are considered maintained by the Debian
project as a whole until someone else volunteers to take over maintenance.2

3.4 The description of a package

Every Debian package must have a Description control field which contains a synopsis and extended description of
the package. Technical information about the format of the Description field is in Description.

The description should describe the package (the program) to a user (system administrator) who has never met it before
so that they have enough information to decide whether they want to install it. This description should not just be copied
verbatim from the program’s documentation.

Put important information first, both in the synopsis and extended description. Sometimes only the first part of the
synopsis or of the description will be displayed. You can assume that there will usually be a way to see the whole
extended description.

The description should also give information about the significant dependencies and conflicts between this package and
others, so that the user knows why these dependencies and conflicts have been declared.

Instructions for configuring or using the package should not be included (that is what installation scripts, manual pages,
info files, etc., are for). Copyright statements and other administrivia should not be included either (that is what the
copyright file is for).

3.4.1 The single line synopsis

The single line synopsis should be kept brief—certainly under 80 characters.

Do not include the package name in the synopsis line. The display software knows how to display this already, and you
do not need to state it. Remember that in many situations the user may only see the synopsis line - make it as informative
as you can.

3.4.2 The extended description

Do not try to continue the single line synopsis into the extended description. This will not work correctly when the full
description is displayed, and makes no sense where only the summary (the single line synopsis) is available.

The extended description should describe what the package does and how it relates to the rest of the system (in terms of,
for example, which subsystem it is which part of).

The description field needs to make sense to anyone, even people who have no idea about any of the things the package
deals with.3

3.5 Dependencies

Every package must specify the dependency information about other packages that are required for the first to work
correctly.

For example, a dependency entry must be provided for any shared libraries required by a dynamically-linked executable
binary in a package.

2 The detailed procedure for gracefully orphaning a package can be found in the Debian Developer’s Reference (see Related documents).
3 The blurb that comes with a program in its announcements and/or README files is rarely suitable for use in a description. It is usually aimed at

people who are already in the community where the package is used.

3.4. The description of a package 15

Debian Policy Manual, Release 4.7.0.2

Packages are not required to declare any dependencies they have on other packages which are marked Essential (see
below), and should not do so unless they depend on a particular version of that package.4

Sometimes, unpacking one package requires that another package be first unpacked and configured. In this case, the
depending package must specify this dependency in the Pre-Depends control field.

You should not specify a Pre-Depends entry for a package before this has been discussed on the debian-develmailing
list and a consensus about doing that has been reached.

The format of the package interrelationship control fields is described in Declaring relationships between packages.

3.6 Virtual packages

Sometimes, there are several packages which offer more-or-less the same functionality. In this case, it’s useful to define
a virtual package whose name describes that common functionality. (The virtual packages only exist logically, not physi-
cally; that’s why they are called virtual.) The packages with this particular function will then provide the virtual package.
Thus, any other package requiring that function can simply depend on the virtual package without having to specify all
possible packages individually.

All packages should use virtual package names where appropriate, and arrange to create new ones if necessary. They
should not use virtual package names (except privately, amongst a cooperating group of packages) unless they have been
agreed upon and appear in the list of virtual package names. (See also Virtual packages - Provides)

The latest version of the authoritative list of virtual package names can be found in the debian-policy package. It is also
available from the Debian web mirrors at https://www.debian.org/doc/packaging-manuals/virtual-package-names-list.
yaml.

The procedure for updating the list is described in the preface to the list.

3.7 Base system

The base system is a minimum subset of the Debian system that is installed before everything else on a new system.
Only very few packages are allowed to form part of the base system, in order to keep the required disk usage very small.

The base system consists of all those packages with priority required or important. Many of them will be tagged
essential (see below).

3.8 Essential packages

Essential is defined as the minimal set of functionality that must be available and usable on the system at all times, even
when packages are in the “Unpacked” state. Packages are tagged essential for a system using the Essential control
field. The format of the Essential control field is described in Essential.

Since these packages cannot be easily removed (one has to specify an extra force option to dpkg to do so), this flag must
not be used unless absolutely necessary. A shared library package must not be tagged essential; dependencies will
prevent its premature removal, and we need to be able to remove it when it has been superseded.

Since dpkg will not prevent upgrading of other packages while an essential package is in an unconfigured state, all
essential packages must supply all of their core functionality even when unconfigured after being configured at least
once. If the package cannot satisfy this requirement it must not be tagged as essential, and any packages depending on
this package must instead have explicit dependency fields as appropriate.

4 Essential is needed in part to avoid unresolvable dependency loops on upgrade. If packages add unnecessary dependencies on packages in this set,
the chances that there will be an unresolvable dependency loop caused by forcing these Essential packages to be configured first before they need to be
is greatly increased. It also increases the chances that frontends will be unable to calculate an upgrade path, even if one exists.
Also, functionality is rarely ever removed from the Essential set, but packages have been removed from the Essential set when the functionality

moved to a different package. So depending on these packages just in case they stop being essential does way more harm than good.

16 Chapter 3. Binary packages

https://www.debian.org/doc/packaging-manuals/virtual-package-names-list.yaml
https://www.debian.org/doc/packaging-manuals/virtual-package-names-list.yaml

Debian Policy Manual, Release 4.7.0.2

Maintainers should take great care in adding any programs, interfaces, or functionality to essential packages. Pack-
ages may assume that functionality provided by essential packages is always available without declaring explicit
dependencies, which means that removing functionality from the Essential set is very difficult and is almost never done.
Any capability added to an essential package therefore creates an obligation to support that capability as part of the
Essential set in perpetuity.

You must not tag any packages essential before this has been discussed on the debian-devel mailing list and a
consensus about doing that has been reached.

3.9 Maintainer Scripts

The package installation scripts should avoid producing output which is unnecessary for the user to see and should rely on
dpkg to stave off boredom on the part of a user installing many packages. This means, amongst other things, not passing
the --verbose option to update-alternatives.

Errors which occur during the execution of an installation script must be checked and the installation must not continue
after an error.

Note that in general Scripts applies to package maintainer scripts, too.

You should not use dpkg-divert on a file belonging to another package without consulting the maintainer of that
package first. When adding or removing diversions, package maintainer scripts must provide the --package flag to
dpkg-divert and must not use --local.

All packages which supply an instance of a common command name (or, in general, filename) should generally use
update-alternatives so that they can be installed together. If update-alternatives is not used, then each
package must use Conflicts to ensure that other packages are removed. (In this case, it may be appropriate to specify
a conflict against earlier versions of something that previously did not use update-alternatives; this is an exception
to the usual rule that versioned conflicts should be avoided.)

Diversions are primarily intended as a tool for local administrators and local packages to override the behavior of Debian.
While there are some circumstances where one Debian package may need to divert a file installed by another Debian
package, such circumstances are rare. Maintainers should strongly prefer using other overriding mechanisms, instead of
diversions, whenever those other mechanisms are sufficient to accomplish the same goal. In other words, diversions in
packages should be considered a last resort. Diversion of a file in one Debian package by another Debian package should
be coordinated between the maintainers of those packages.

One specific case of this rule is that configuration files used by systemd components, such as units, udev
rules, tmpfiles.d, modules-load.d, sysusers and other such files, including those specific to systemd daemons (e.g.:
/etc/systemd/system.conf). must not be diverted by any Debian package. Instead, use masking and drop-ins.

Alternatives must not be used for systemd configuration files. The alternatives system does not know how to apply
changes to services when updating alternatives, so the resulting behavior would be confusing and unpredictable. Instead,
aliases can be used to provide alternative implementations of the same named unit.

3.9.1 Prompting in maintainer scripts

Package maintainer scripts may prompt the user if necessary. Prompting must be done by communicating through a
program, such as debconf, which conforms to the Debian Configuration Management Specification, version 2 or higher.

Packages which are essential, or which are dependencies of essential packages, may fall back on another prompting
method if no such interface is available when they are executed.

The Debian Configuration Management Specification is included in the debconf_specification files in the debian-
policy package. It is also available from the Debian web mirrors at https://www.debian.org/doc/packaging-manuals/
debconf_specification.html.

Packages which use the Debian Configuration Management Specification may contain the additional package metadata
files config and templates. config is an additional maintainer script used for package configuration, and templates

3.9. Maintainer Scripts 17

https://www.freedesktop.org/software/systemd/man/systemd.unit.html#Description
https://www.freedesktop.org/software/systemd/man/udev.html#Rules%20Files
https://www.freedesktop.org/software/systemd/man/udev.html#Rules%20Files
https://www.freedesktop.org/software/systemd/man/tmpfiles.d.html#Configuration%20Directories%20and%20Precedence
https://www.freedesktop.org/software/systemd/man/modules-load.d.html#Configuration%20Format
https://www.freedesktop.org/software/systemd/man/sysusers.d.html#Configuration%20Directories%20and%20Precedence
https://www.freedesktop.org/software/systemd/man/systemd-system.conf.html
https://www.freedesktop.org/software/systemd/man/systemd.unit.html#Description
https://www.freedesktop.org/software/systemd/man/systemd.unit.html#Description
https://www.debian.org/doc/packaging-manuals/debconf_specification.html
https://www.debian.org/doc/packaging-manuals/debconf_specification.html

Debian Policy Manual, Release 4.7.0.2

contains templates used for user prompting. The config script might be run before the preinst script and before the
package is unpacked or any of its dependencies or pre-dependencies are satisfied. Therefore it must work using only the
tools present in essential packages.5

Packages which use the Debian Configuration Management Specification must allow for translation of their user-visible
messages by using a gettext-based system such as the one provided by the po-debconf package.

Packages should try to minimize the amount of prompting they need to do, and they should ensure that the user will only
ever be asked each question once. This means that packages should try to use appropriate shared configuration files (such
as /etc/papersize and /etc/news/server), and shared debconf variables rather than each prompting for their own
list of required pieces of information.

It also means that an upgrade should not ask the same questions again, unless the user has used dpkg --purge to remove
the package’s configuration. The answers to configuration questions should be stored in an appropriate place in /etc so
that the user can modify them, and how this has been done should be documented.

If a package has a vitally important piece of information to pass to the user (such as “don’t run me as I am, you must edit
the following configuration files first or you risk your system emitting badly-formatted messages”), it should display this
in the config or postinst script and prompt the user to hit return to acknowledge the message. Copyright messages
do not count as vitally important (they belong in /usr/share/doc/PACKAGE/copyright); neither do instructions on
how to use a program (these should be in on-line documentation, where all the users can see them).

Any necessary prompting should almost always be confined to the config or postinst script. If it is done in the
postinst, it should be protected with a conditional so that unnecessary prompting doesn’t happen if a package’s instal-
lation fails and the postinst is called with abort-upgrade, abort-remove or abort-deconfigure.

5 Debconf or another tool that implements the Debian Configuration Management Specification will also be installed, and any versioned dependen-
cies on it will be satisfied before preconfiguration begins.

18 Chapter 3. Binary packages

CHAPTER

FOUR

SOURCE PACKAGES

A Debian source package contains the source material used to construct one or more binary packages. A source package
consists of a .dsc file (see Debian source package control files – .dsc), one or more compressed tar files, and possibly
other files depending on the type and format of source package. Binary packages are contructed from the source package
via a build process defined by debian/rules and other files in the debian directory of the unpacked source package.

Debian source packages are classified as native or non-native.

A native source package is one that does not distinguish between Debian packaging releases and upstream releases. A
native source package contains a single tar file of source material, and the versioning does not have a Debian-specific
component. Native packages are normally (but not exclusively) used for software that has no independent existence
outside of Debian, such as software written specifically to be a Debian package.

A non-native source package separates the upstream release from the Debian packaging and any Debian-specific changes.
The source in a non-native source package is divided into one ormore upstream tar files plus a collection ofDebian-specific
files. (Depending on the format of the source package, those Debian-specific files may come in the form of another tar
file or in the form of a compressed diff.) The version of a non-native package has an upstream component and a Debian
component, and there may be multiple Debian package versions associated with a single upstream release version and
sharing the same upstream source tar files.

Most source packages in Debian are non-native.

4.1 Standards conformance

Source packages should specify the most recent version number of this policy document with which your package com-
plied when it was last updated.

The version is specified in the Standards-Version control field. The format of the Standards-Version field is
described in Standards-Version.

For a package to have an old Standards-Version value is not itself a bug, however. It just means that no-one has yet
reviewed the package with changes to the standards in mind.

When updating existing packaging, the Standards-Version must not be updated except after reviewing the changes be-
tween the old and the new versions of the standards and updating your package if necessary (the Upgrading checklist can
help with this task).

A very old Standards-Version can mean that infelicities in the package are likely. It is recommended that each package
be reviewed at least once per Debian release, so a Standards-Version older than the previous Debian release is indicative
of work (if only review work) that needs doing.

19

Debian Policy Manual, Release 4.7.0.2

4.2 Package relationships

Source packages should specify which binary packages they require to be installed or not to be installed in order to build
correctly. For example, if building a package requires a certain compiler, then the compiler should be specified as a
build-time dependency.

It is not necessary to explicitly specify build-time relationships on a minimal set of packages that are always needed
to compile, link and put in a Debian package a standard “Hello World!” program written in C or C++. The required
packages are called build-essential, and an informational list can be found in /usr/share/doc/build-essential/
list (which is contained in the build-essential package).1

When specifying the set of build-time dependencies, one should list only those packages explicitly required by the build.
It is not necessary to list packages which are required merely because some other package in the list of build-time depen-
dencies depends on them.2

If build-time dependencies are specified, it must be possible to build the package and produce working binaries on a system
with only essential and build-essential packages installed and also those required to satisfy the build-time relationships
(including any implied relationships). In particular, this means that version clauses should be used rigorously in build-time
relationships so that one cannot produce bad or inconsistently configured packages when the relationships are properly
satisfied.

Declaring relationships between packages explains the technical details.

4.3 Changes to the upstream sources

If changes to the source code are made that are not specific to the needs of the Debian system, they should be sent to the
upstream authors in whatever form they prefer so as to be included in the upstream version of the package.

If you need to configure the package differently for Debian or for Linux, and the upstream source doesn’t provide a way
to do so, you should add such configuration facilities (for example, a new autoconf test or #define) and send the patch
to the upstream authors, with the default set to the way they originally had it. You can then easily override the default in
your debian/rules or wherever is appropriate.

You should make sure that the configure utility detects the correct architecture specification string (refer toArchitecture
specification strings for details).

If your package includes the scripts config.sub and config.guess, you should arrange for the versions provided by
the package autotools-dev be used instead (see autotools-dev documentation for details how to achieve that). This ensures
that these files can be updated distribution-wide at build time when introducing new architectures.

If you need to edit a Makefile where GNU-style configure scripts are used, you should edit the .in files rather than
editing the Makefile directly. This allows the user to reconfigure the package if necessary. You should not configure the
package and edit the generated Makefile! This makes it impossible for someone else to later reconfigure the package
without losing the changes you made.

1 Rationale:

• This allows maintaining the list separately from the policy documents (the list does not need the kind of control that the policy documents do).

• Having a separate package allows one to install the build-essential packages on a machine, as well as allowing other packages such as tasks to
require installation of the build-essential packages using the depends relation.

• The separate package allows bug reports against the list to be categorized separately from the policy management process in the BTS.

2 The reason for this is that dependencies change, and you should list all those packages, and only those packages that you need directly. What
others need is their business. For example, if you only link against libimlib, you will need to build-depend on libimlib2-dev but not against any
libjpeg* packages, even though libimlib2-dev currently depends on them: installation of libimlib2-dev will automatically ensure that all of its
run-time dependencies are satisfied.

20 Chapter 4. Source packages

Debian Policy Manual, Release 4.7.0.2

4.4 Debian changelog: debian/changelog

Every source package must include the Debian changelog file, debian/changelog. Changes in the Debian version of
the package should be briefly explained in this file.3 This includes modifications made in the Debian package compared
to the upstream one as well as other changes and updates to the package.4

The format of the debian/changelog allows the package building tools to discover which version of the package is
being built and find out other release-specific information.

That format is a series of entries like this:

package (version) distribution(s); urgency=urgency

[optional blank line(s), stripped]

* change details

more change details

[blank line(s), included in output of dpkg-parsechangelog]

* even more change details

[optional blank line(s), stripped]

-- maintainer name <email address>[two spaces] date

package and version are the source package name and version number.

distribution(s) lists the distributions where this version should be installed when it is uploaded - it is copied to the
Distribution field in the .changes file. See Distribution.

urgency is the value for the Urgency field in the .changes file for the upload (see Urgency). It is not possible to
specify an urgency containing commas; commas are used to separate keyword=value settings in the dpkg changelog
format (though there is currently only one useful keyword, urgency).

The change details may in fact be any series of lines starting with at least two spaces, but conventionally each change
starts with an asterisk and a separating space and continuation lines are indented so as to bring them in line with the start
of the text above. Blank lines may be used here to separate groups of changes, if desired.

If this upload resolves bugs recorded in the Bug Tracking System (BTS), they may be automatically closed on the inclusion
of this package into the Debian archive by including the string: closes: Bug#nnnnn in the change details, where
#nnnnn is the bug number.5 This information is conveyed via the Closes field in the .changes file (see Closes).

The maintainer name and email address used in the changelog should be the details of the person who prepared this
release of the package. They are not necessarily those of the uploader or usual package maintainer.6 The information
here will be copied to the Changed-By field in the .changes file (see Changed-By), and then later used to send an
acknowledgement when the upload has been installed.

The date has the following format7 (compatible and with the same semantics of RFC 2822 and RFC 5322):
3 Mistakes in changelogs are usually best rectified by making a new changelog entry rather than “rewriting history” by editing old changelog entries.
4 Although there is nothing stopping an author who is also the Debian maintainer from using this changelog for all their changes, it will have to be

renamed if the Debian and upstream maintainers become different people. In such a case, however, it might be better to maintain the package as a
non-native package.

5 To be precise, the string should match the following Perl regular expression:

/closes:\s*(?:bug)?\#?\s?\d+(?:,\s*(?:bug)?\#?\s?\d+)*/i

That is: The string should consist of the word closes: followed by a comma-separated list of bug numbers. Bug numbers may be preceded by the
word bug and/or a # sign, as in Closes: 42, bug#43, #44, bug 45.
The list of bug numbers may span multiple lines.
All of the bug numbers listed will be closed by the archive maintenance software (dak) using the version of the changelog entry.
The words closes: and bug are not case sensitive.
6 In the case of a sponsored upload, the uploader signs the files, but the changelog maintainer name and address are those of the person who prepared

this release. If the preparer of the release is not one of the usual maintainers of the package (as listed in the Maintainer or Uploaders control fields of
the package), the first line of the changelog is conventionally used to explain why a non-maintainer is uploading the package. The Debian Developer’s
Reference (see Related documents) documents the conventions used.

7 This is the same as the format generated by date -R.

4.4. Debian changelog: debian/changelog 21

Debian Policy Manual, Release 4.7.0.2

day-of-week, dd month yyyy hh:mm:ss +zzzz

where:

• day-of-week is one of: Mon, Tue, Wed, Thu, Fri, Sat, Sun

• dd is a one- or two-digit day of the month (01-31)

• month is one of: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

• yyyy is the four-digit year (e.g. 2010)

• hh is the two-digit hour (00-23)

• mm is the two-digit minutes (00-59)

• ss is the two-digit seconds (00-60)

• +zzzz or -zzzz is the time zone offset from Coordinated
Universal Time (UTC). “+” indicates that the time is ahead of (i.e., east of) UTC and “-” indicates that the
time is behind (i.e., west of) UTC. The first two digits indicate the hour difference from UTC and the last
two digits indicate the number of additional minutes difference from UTC. The last two digits must be in the
range 00-59.

The first “title” line with the package name must start at the left hand margin. The “trailer” line with the maintainer and
date details must be preceded by exactly one space. The maintainer details and the date must be separated by exactly two
spaces.

The entire changelog must be encoded in UTF-8.

For more information on placement of the changelog files within binary packages, please see Changelog files and release
notes.

4.5 Copyright: debian/copyright

Every package must be accompanied by a verbatim copy of its distribution license(s) in the file /usr/share/doc/
PACKAGE/copyright.

This file is often required to contain a verbatim copy of the package’s copyright information, too; seeCopyright information
and Copyright considerations for details, and for further considerations related to copyrights for packages.

4.6 Error trapping in makefiles

When make invokes a command in a makefile (including your package’s upstream makefiles and debian/rules), it
does so using sh. This means that sh’s usual bad error handling properties apply: if you include a miniature script as one
of the commands in your makefile you’ll find that if you don’t do anything about it then errors are not detected and make
will blithely continue after problems.

Every time you put more than one shell command (this includes using a loop) in a makefile command you must make
sure that errors are trapped. For simple compound commands, such as changing directory and then running a program,
using && rather than semicolon as a command separator is sufficient. For more complex commands including most loops
and conditionals you should include a separate set -e command at the start of every makefile command that’s actually
one of these miniature shell scripts.

22 Chapter 4. Source packages

Debian Policy Manual, Release 4.7.0.2

4.7 Time Stamps

Maintainers should preserve the modification times of the upstream source files in a package, as far as is reasonably
possible.8

4.8 Restrictions on objects in source packages

The source package must not contain device special files, sockets, or setuid or setgid files.9

4.9 Main building script: debian/rules

This file must be an executable makefile. It contains the package-specific recipes for compiling the source (if required)
and constructing one or more binary packages.

debian/rules must start with the line #!/usr/bin/make -f, so that it can be invoked by saying its name rather
than invoking make explicitly. That is, invoking either of make -f debian/rules args... or ./debian/rules
args... must result in identical behavior.

The recommended way to implement the build process of a Debian package, in the absence of a good reason to use
a different approach, is the dh tool. This includes the contents of the debian/rules building script. dh is the most
common packaging helper tool in Debian. Using it will usually save effort in complying with the rules in this document,
because dh will automatically implement many of them without requiring explicit instructions.

There are sometimes good reasons to use a different approach. For example, the standard tools for packaging software
written in some languages may use another tool; some rarer packaging patterns, such as multiple builds of the same
software with different options, are easier to express with other tools; and a packager working on a different packaging
helper might want to use their tool. The recommendation to use dh does not always apply, and use of dh is not required.

For more information about how to use dh, see the documentation in the debhelper package, most notably the dh(1)
manual page.

The following targets are required and must be implemented by debian/rules: clean, binary, binary-arch,
binary-indep, build, build-arch and build-indep. These are the targets called by dpkg-buildpackage.

Since an interactive debian/rules script makes it impossible to auto-compile that package and also makes it hard for
other people to reproduce the same binary package, all required targets must be non-interactive. It also follows that any
target that these targets depend on must also be non-interactive.

The package build should be as verbose as reasonably possible, except where the terse tag is included in
DEB_BUILD_OPTIONS (see debian/rules and DEB_BUILD_OPTIONS). This makes life easier for porters and bug squash-
ers more generally, who can look at build logs for possible problems. To accomplish this, debian/rules should pass to
the commands it invokes options that cause them to produce verbose output. For example, the build target should pass
--disable-silent-rules to any configure scripts. See also Binaries.

Except for packages in the non-free archive with the Autobuild control field unset or set to no, required targets must
not attempt network access, except, via the loopback interface, to services on the build host that have been started by the
build.

Required targets must not attempt to write outside of the unpacked source package tree. There are two exceptions. Firstly,
the binary targets may write the binary packages to the parent directory of the unpacked source package tree. Secondly,
required targets may write to /tmp, /var/tmp and to the directory specified by the TMPDIR environment variable, but
must not depend on the contents of any of these.

8 The rationale is that there is some information conveyed by knowing the age of the file, for example, you could recognize that some documentation
is very old by looking at the modification time, so it would be nice if the modification time of the upstream source would be preserved.

9 Setgid directories are allowed.

4.7. Time Stamps 23

Debian Policy Manual, Release 4.7.0.2

This restriction is intended to prevent source package builds creating and depending on state outside of themselves, thus
affecting multiple independent rebuilds. In particular, the required targets must not attempt to write into HOME.

The targets are as follows:

build (required)
The build target should perform all the configuration and compilation of the package. If a package has an in-
teractive pre-build configuration routine, the Debian source package must either be built after this has taken place
(so that the binary package can be built without rerunning the configuration) or the configuration routine modi-
fied to become non-interactive. (The latter is preferable if there are architecture-specific features detected by the
configuration routine.)

For some packages, notably ones where the same source tree is compiled in different ways to produce two binary
packages, the build target does not make much sense. For these packages it is good enough to provide two (or
more) targets (build-a and build-b or whatever) for each of the ways of building the package, and a build
target that does nothing. The binary target will have to build the package in each of the possible ways and make
the binary package out of each.

The build target must not do anything that might require root privilege.

The build target may need to run the clean target first - see below.

When a package has a configuration and build routine which takes a long time, or when the makefiles are poorly
designed, or when build needs to run clean first, it is a good idea to touch build when the build process is
complete. This will ensure that if debian/rules build is run again it will not rebuild the whole program.10

build-arch (required), build-indep (required)
The build-arch target must perform all the configuration and compilation required for producing all architecture-
dependent binary packages (those packages for which the body of the Architecture field in debian/control
is not all). Similarly, the build-indep target must perform all the configuration and compilation required for
producing all architecture-independent binary packages (those packages for which the body of the Architecture
field in debian/control is all). The build target should either depend on those targets or take the same actions
as invoking those targets would perform.11

The build-arch and build-indep targets must not do anything that might require root privilege.

binary (required), binary-arch (required), binary-indep (required)
The binary target must be all that is necessary for the user to build the binary package(s) produced from this source
package. It is split into two parts: binary-arch builds the binary packages which are specific to a particular
architecture, and binary-indep builds those which are not.

binary may be (and commonly is) a target with no commands which simply depends on binary-arch and
binary-indep.

Both binary-* targets should depend on the build target, or on the appropriate build-arch or build-indep
target, so that the package is built if it has not been already. It should then create the relevant binary package(s),
using dpkg-gencontrol to make their control files and dpkg-deb to build them and place them in the parent
of the top level directory.

Both the binary-arch and binary-indep targets must exist. If one of them has nothing to do (which will
always be the case if the source generates only a single binary package, whether architecture-dependent or not), it
must still exist and must always succeed.

The binary targets may need to be invoked as root depending on the value of the Rules-Requires-Root field.12

10 Another common way to do this is for build to depend on build-stamp and to do nothing else, and for the build-stamp target to do the
building and to touch build-stamp on completion. This is especially useful if the build routine creates a file or directory called build; in such a
case, build will need to be listed as a phony target (i.e., as a dependency of the .PHONY target). See the documentation of make for more information
on phony targets.

11 This split allows binary-only builds to not install the dependencies required for the build-indep target and skip any resource-intensive build
tasks that are only required when building architecture-independent binary packages.

12 The fakeroot package often allows one to build a package correctly even without being root.

24 Chapter 4. Source packages

Debian Policy Manual, Release 4.7.0.2

clean (required)
This must undo any effects that the build and binary targets may have had, except that it should leave alone any
output files created in the parent directory by a run of a binary target.

If a build file is touched at the end of the build target, as suggested above, it should be removed as the first
action that clean performs, so that running build again after an interrupted clean doesn’t think that everything
is already done.

The clean target may need to be invoked as root if binary has been invoked since the last clean, or if build
has been invoked as root (since build may create directories, for example).

The clean target cannot be used to remove files in the source tree that are not compatible with the DFSG. This
is because the files would remain in the upstream tarball, and thus in the source package, so the source package
would continue to violate DFSG. Instead, the upstream source should be repacked to remove those files.

patch (optional)
This target performs whatever additional actions are required to make the source ready for editing (unpacking
additional upstream archives, applying patches, etc.). It is recommended to be implemented for any package
where dpkg-source -x does not result in source ready for additional modification. See Source package handling:
debian/README.source.

The build, binary and clean targets must be invokedwith the current directory being the package’s top-level directory.

Additional targets may exist in debian/rules, either as published or undocumented interfaces or for the package’s
internal use.

The architectures we build on and build for are determined by make variables using the utility dpkg-architecture.
You can determine the Debian architecture and the GNU style architecture specification string for the build architecture
as well as for the host architecture. The build architecture is the architecture on which debian/rules is run and the
package build is performed. The host architecture is the architecture on which the resulting package will be installed and
run. The target architecture is the architecture of the packages that the compiler currently being built will generate. These
are normally the same, but may be different in the case of cross-compilation (building packages for one architecture on
machines of a different architecture), building a cross-compiler (a compiler package that will generate objects for one
architecture, built on a machine of a different architecture) or a Canadian cross-compiler (a compiler that will generate
objects for one architecture, built on a machine of a different architecture, that will run on yet a different architecture).

Here is a list of supported make variables:

• DEB_*_ARCH (the Debian architecture)

• DEB_*_ARCH_CPU (the Debian CPU name)

• DEB_*_ARCH_BITS (the Debian CPU pointer size in bits)

• DEB_*_ARCH_ENDIAN (the Debian CPU endianness)

• DEB_*_ARCH_OS (the Debian System name)

• DEB_*_GNU_TYPE (the GNU style architecture specification string)

• DEB_*_GNU_CPU (the CPU part of DEB_*_GNU_TYPE)

• DEB_*_GNU_SYSTEM (the System part of DEB_*_GNU_TYPE)

where * is either BUILD for specification of the build architecture, HOST for specification of the host architecture or
TARGET for specification of the target architecture.

Backward compatibility can be provided in the rules file by setting the needed variables to suitable default values; please
refer to the documentation of dpkg-architecture for details.

It is important to understand that the DEB_*_ARCH string only determines which Debian architecture we are building
on or for. It should not be used to get the CPU or system information; the DEB_*_ARCH_CPU and DEB_*_ARCH_OS

variables should be used for that. GNU style variables should generally only be used with upstream build systems.

4.9. Main building script: debian/rules 25

Debian Policy Manual, Release 4.7.0.2

The builder may set DEB_RULES_REQUIRES_ROOT environment variable when calling any of the mandatory targets as
defined in Rules-Requires-Root. If the variable is not set, the package must behave as if it was set to binary-targets.

4.9.1 debian/rules and DEB_BUILD_OPTIONS

Supporting the standardized environment variable DEB_BUILD_OPTIONS is recommended. This variable can contain
several flags to change how a package is compiled and built. Each flag must be in the form flag or flag=options. If
multiple flags are given, they must be separated by whitespace.13 flag must start with a lowercase letter (a-z) and consist
only of lowercase letters, numbers (0-9), and the characters - and _ (hyphen and underscore). options must not contain
whitespace. The same tag should not be given multiple times with conflicting values. Package maintainers may assume
that DEB_BUILD_OPTIONS will not contain conflicting tags.

The meaning of the following tags has been standardized:

nocheck

This tag says to not run any build-time test suite provided by the package.

nodoc

This tag says to skip any build steps that only generate package documentation. Files required by other sections
of Debian Policy, such as copyright and changelog files, must still be generated and put in the package, but other
generated documentation such as help2man-generated pages, Doxygen-generatedAPI documentation, or info pages
generated from Texinfo sources should be skipped if possible. This option does not change the set of binary
packages generated by the source package, but documentation-only binary packages may be nearly empty when
built with this option.

noopt

The presence of this tag means that the package should be compiled with a minimum of optimization. For C
programs, it is best to add -O0 to CFLAGS (although this is usually the default). Some programs might fail to build
or run at this level of optimization; it may be necessary to use -O1, for example.

nostrip

This tag means that the debugging symbols should not be stripped from the binary during installation, so that
debugging information may be included in the package.

parallel=n

This tag means that the package should be built using up to n parallel processes if the package build system supports
this.14 If the package build system does not support parallel builds, this string must be ignored. If the package
build system only supports a lower level of concurrency than n, the package should be built using as many parallel
processes as the package build system supports. It is up to the package maintainer to decide whether the package
build times are long enough and the package build system is robust enough to make supporting parallel builds
worthwhile.

terse

This tag means that the package build will be less verbose than default. For example, debian/rules might pass
options to the package’s configure script that cause the compiler to produce less output.

Unknown flags must be ignored by debian/rules.

The following makefile snippet is an example of how one may implement the build options; you will probably have to
massage this example in order to make it work for your package.

CFLAGS = -Wall -g

INSTALL = install

INSTALL_FILE = $(INSTALL) -p -o root -g root -m 644

INSTALL_PROGRAM = $(INSTALL) -p -o root -g root -m 755

(continues on next page)

13 Some packages support any delimiter, but whitespace is the easiest to parse inside a makefile and avoids ambiguity with flag values that contain
commas.

14 Packages built with make can often implement this by passing the -jn option to make.

26 Chapter 4. Source packages

Debian Policy Manual, Release 4.7.0.2

(continued from previous page)

INSTALL_SCRIPT = $(INSTALL) -p -o root -g root -m 755

INSTALL_DIR = $(INSTALL) -p -d -o root -g root -m 755

ifneq (,$(filter noopt,$(DEB_BUILD_OPTIONS)))

CFLAGS += -O0

else

CFLAGS += -O2

endif

ifeq (,$(filter nostrip,$(DEB_BUILD_OPTIONS)))

INSTALL_PROGRAM += -s

endif

ifneq (,$(filter parallel=%,$(DEB_BUILD_OPTIONS)))

NUMJOBS = $(patsubst parallel=%,%,$(filter parallel=%,$(DEB_BUILD_OPTIONS)))

MAKEFLAGS += -j$(NUMJOBS)

endif

build:

...

ifeq (,$(filter nocheck,$(DEB_BUILD_OPTIONS)))

Code to run the package test suite.

endif

4.9.2 debian/rules and Rules-Requires-Root

Depending on the value of the Rules-Requires-Root field, the package builder (e.g. dpkg-buildpackage) may run the
debian/rules target as an unprivileged user and provide a gain root command. This command allows the debian/
rules target to run particular subcommands under (fake)root.

The gain root command is passed to the build script via the DEB_GAIN_ROOT_CMD environment variable. The contents
of this variable is a space separated list, the first entry of which is the command, and the proceeding entries of which are
arguments to the command. The gain root command must be available via PATH. The gain root command must not rely
on shell features because it will not necessarily be invoked via a shell.

The gain root command must not run interactively, including prompting for any user input. It must be possible to prepend
the gain root command to an existing command and its arguments, without needing to alter or quote the existing command
and its arguments. Furthermore, the gain root commandmust preserve all environment variables without the caller having
to explicitly request any preservation.

The following are examples of valid gain root commands (in syntax of sh), assuming the tools used are available and
properly configured:

Command "sudo", with arguments "-nE" and "--"

export DEB_GAIN_ROOT_CMD='sudo -nE --'

Command "fakeroot" with the single argument "--"

export DEB_GAIN_ROOT_CMD='fakeroot --'

Examples of valid use of the gain root command:

sh-syntax (assumes set -e semantics for error handling)

$DEB_GAIN_ROOT_CMD some-cmd --which-requires-root

perl

my @cmd = ('some-cmd', '--which-requires-root');

(continues on next page)

4.9. Main building script: debian/rules 27

Debian Policy Manual, Release 4.7.0.2

(continued from previous page)

unshift(@cmd, split(' ', $ENV{DEB_GAIN_ROOT_CMD})) if $ENV{DEB_GAIN_ROOT_CMD};

system(@cmd) == 0 or die("@cmd failed");

4.10 Variable substitutions: debian/substvars

When dpkg-gencontrol generates binary package control files (DEBIAN/control), it performs variable substitutions
on its output just before writing it. Variable substitutions have the form ${variable}. The optional file debian/
substvars contains variable substitutions to be used; variables can also be set directly from debian/rules using the
-V option to the source packaging commands, and certain predefined variables are also available.

The debian/substvars file is usually generated and modified dynamically by debian/rules targets, in which case
it must be removed by the clean target.

See deb-substvars(5) for full details about source variable substitutions, including the format of debian/

substvars.

4.11 Upstream source location: debian/watch

This is a configuration file for the uscan utility which defines how to automatically scan ftp or http sites for newly available
updates of the package. This is also used by some Debian QA tools to help with quality control and maintenance of the
distribution as a whole. If the upstream source of the package is available via a mechaism that uscan understands,
including this configuration file is recommended.

If the upstream maintainer of the software provides OpenPGP signatures for new releases, including the information
required for uscan to verify signatures for new upstream releases is also recommended. To do this, use the pgpsig-
urlmangle option in debian/watch to specify the location of the upstream signature, and include the key or keys used
to sign upstream releases in the Debian source package as debian/upstream/signing-key.asc.

For more information about uscan and these options, including how to generate the file containing upstream signing
keys, see uscan(1).

4.12 Generated files list: debian/files

This file is not a permanent part of the source tree; it is used while building packages to record which files are being
generated. dpkg-genchanges uses it when it generates a .changes file.

It should not exist in a shipped source package, and so it (and any backup files or temporary files such as files.new)15

should be removed by the clean target. It may also be wise to ensure a fresh start by emptying or removing it at the start
of the binary target.

When dpkg-gencontrol is run for a binary package, it adds an entry to debian/files for the .deb file that will be
created when dpkg-deb --build is run for that binary package. So for most packages all that needs to be done with
this file is to delete it in the clean target.

If a package upload includes files besides the source package and any binary packages whose control files were
made with dpkg-gencontrol then they should be placed in the parent of the package’s top-level directory and
dpkg-distaddfile should be called to add the file to the list in debian/files.

15 files.new is used as a temporary file by dpkg-gencontrol and dpkg-distaddfile - they write a new version of files here before
renaming it, to avoid leaving a corrupted copy if an error occurs.

28 Chapter 4. Source packages

Debian Policy Manual, Release 4.7.0.2

4.13 Embedded code copies

Some software packages include in their distribution convenience copies of code from other software packages, generally
so that users compiling from source don’t have to download multiple packages. Debian packages should not make use
of these convenience copies unless the included package is explicitly intended to be used in this way.16 If the included
code is already in the Debian archive in the form of a library, the Debian packaging should ensure that binary packages
reference the libraries already in Debian and the convenience copy is not used. If the included code is not already in
Debian, it should be packaged separately as a prerequisite if possible.17

4.14 Source package handling: debian/README.source

If running dpkg-source -x on a source package doesn’t produce the source of the package, ready for editing, and allow
one to make changes and run dpkg-buildpackage to produce a modified package without taking any additional steps,
creating a debian/README.source documentation file is recommended. This file should explain how to do all of the
following:

1. Generate the fully patched source, in a form ready for editing, that would be built to create Debian packages. Doing
this with a patch target in debian/rules is recommended; see Main building script: debian/rules.

2. Modify the source and save those modifications so that they will be applied when building the package.

3. Remove source modifications that are currently being applied when building the package.

4. Optionally, document what steps are necessary to upgrade the Debian source package to a new upstream version,
if applicable.

This explanation should include specific commands and mention any additional required Debian packages. It should not
assume familiarity with any specific Debian packaging system or patch management tools.

This explanation may refer to a documentation file installed by one of the package’s build dependencies provided that the
referenced documentation clearly explains these tasks and is not a general reference manual.

debian/README.source may also include any other information that would be helpful to someone modifying the
source package. Even if the package doesn’t fit the above description, maintainers are encouraged to document in a
debian/README.source file any source package with a particularly complex or unintuitive source layout or build
system (for example, a package that builds the same source multiple times to generate different binary packages).

4.15 Reproducibility

Packages should build reproducibly, which for the purposes of this document18 means that given

• a version of a source package unpacked at a given path;

• a set of versions of installed build dependencies;

• a set of environment variable values;

• a build architecture; and

• a host architecture,

repeatedly building the source package for the build architecture on any machine of the host architecture with those
versions of the build dependencies installed and exactly those environment variable values set will produce bit-for-bit
identical binary packages.

16 For example, parts of the GNU build system work like this.
17 Havingmultiple copies of the same code in Debian is inefficient, often creates either static linking or shared library conflicts, and, most importantly,

increases the difficulty of handling security vulnerabilities in the duplicated code.
18 This is Debian’s precisification of the reproducible-builds.org definition.

4.13. Embedded code copies 29

https://reproducible-builds.org/docs/definition/

Debian Policy Manual, Release 4.7.0.2

It is recommended that packages produce bit-for-bit identical binaries even if most environment variables and build paths
are varied. It is intended for this stricter standard to replace the above when it is easier for packages to meet it.

4.16 Missing sources: debian/missing-sources

Sometimes upstream does not include the source code for some files in the upstream tarball. In order to satisfy the DFSG
for packages in main or contrib, you should either:

1. repack the upstream tarball to include those sources; or

2. include a copy of the sources in the debian/missing-sources directory.

Package maintainers may optionally use the following convention to organize the contents of debian/

missing-sources: for a sourceless file foo in the subdirectory bar of the upstream tarball, where the source of foo
has extension baz, place the source at debian/missing-sources/bar/foo.baz. For example, according to this
convention, the C source code of an executable checksum/util would be located at debian/missing-sources/
checksum/util.c.

4.17 Vendor-specific patch series

Packages in the Debian archive using the 3.0 (quilt) source package format must not contain a non-default series file. That
is, there must not exist a file debian/patches/foo.series for any foo.

30 Chapter 4. Source packages

CHAPTER

FIVE

CONTROL FILES AND THEIR FIELDS

The package management system manipulates data represented in a common format, known as control data, stored in
control files. Control files are used for source packages, binary packages and the .changes files which control the
installation of uploaded files.1

5.1 Syntax of control files

A control file consists of one or more stanzas of fields.2 The stanzas are separated by empty lines. Parsers may accept
lines consisting solely of spaces and tabs as stanza separators, but control files should use empty lines. Some control files
allow only one stanza; others allow several, in which case each stanza usually refers to a different package. (For example,
in source packages, the first stanza refers to the source package, and later stanzas refer to binary packages generated from
the source.) The ordering of the stanzas in control files is significant.

Each stanza consists of a series of data fields. Each field consists of the field name followed by a colon and then the
data/value associated with that field. The field name is composed of US-ASCII characters excluding control characters,
space, and colon (i.e., characters in the ranges U+0021 (!) through U+0039 (9), and U+003B (;) through U+007E (~),
inclusive). Field names must not begin with the comment character (U+0023 #), nor with the hyphen character (U+002D
-).

The field ends at the end of the line or at the end of the last continuation line (see below). Horizontal whitespace (spaces
and tabs) may occur immediately before or after the value and is ignored there; it is conventional to put a single space
after the colon. For example, a field might be:

Package: libc6

the field name is Package and the field value libc6.

Empty field values are only permitted in source package template control files (debian/control). Such fields are
ignored.

A stanza must not contain more than one instance of a particular field name.

There are three types of fields:

simple
The field, including its value, must be a single line. Folding of the field is not permitted. This is the default field
type if the definition of the field does not specify a different type.

folded
The value of a folded field is a logical line that may span several lines. The lines after the first are called continuation

1 dpkg’s internal databases are in a similar format.
2 The stanzas somtimes used to be referred to as paragraphs, but that caused confusion with text paragraphs in prose, so it is now considered a

discouraged term.

31

Debian Policy Manual, Release 4.7.0.2

lines and must start with a space or a tab. Whitespace, including any newlines, is not significant in the field values
of folded fields.3

multiline
The value of a multiline field may comprise multiple continuation lines. The first line of the value, the part on the
same line as the field name, often has special significance or may have to be empty. Other lines are added following
the same syntax as the continuation lines of the folded fields. Whitespace, including newlines, is significant in the
values of multiline fields.

Whitespace must not appear inside names (of packages, architectures, files or anything else) or version numbers, or
between the characters of multi-character version relationships.

The presence and purpose of a field, and the syntax of its value, may differ between types of control files.

Field names are not case-sensitive, but it is usual to capitalize the field names using mixed case as shown below. Field
values are case-sensitive unless the description of the field says otherwise.

Stanza separators (empty lines), and lines consisting only of U+0020 SPACE and U+0009 TAB, are not allowed within
field values or between fields. Empty lines in field values are usually escaped by representing them by a U+0020 SPACE
followed by a U+002E (.).

Lines starting with U+0023 (#), without any preceding whitespace, are comment lines that are only permitted in source
package control files (debian/control). These comment lines are ignored, even between two continuation lines. They
do not end logical lines.

All control files must be encoded in UTF-8.

5.2 Debian source package template control files – debian/control

The debian/control file contains the most vital (and version-independent) information about the source package and
about the binary packages it creates.

The first stanza of the control file contains information about the source package in general. The subsequent stanzas
each describe a binary package that the source tree builds. Each binary package built from this source package has a
corresponding stanza, except for any automatically-generated debug packages that do not require one.

The fields in the source package stanza (the first one) are:

• Source (mandatory)

• Maintainer (mandatory)

• Uploaders

• Section (recommended)

• Priority (recommended)

• Build-Depends et al

• Standards-Version (mandatory)

• Homepage

• Version Control System (VCS) fields

• Testsuite

• Rules-Requires-Root

The fields in the binary package stanzas are:

3 This folding method is similar to RFC 5322, allowing control files that contain only one stanza and no multiline fields to be read by parsers written
for RFC 5322.

32 Chapter 5. Control files and their fields

Debian Policy Manual, Release 4.7.0.2

• Package (mandatory)

• Architecture (mandatory)

• Section (recommended)

• Priority (recommended)

• Essential

• Depends et al

• Description (mandatory)

• Homepage

• Built-Using

• Package-Type

The syntax and semantics of the fields are described below.

These fields are used by dpkg-gencontrol to generate control files for binary packages (see below), by
dpkg-genchanges to generate the .changes file to accompany the upload, and by dpkg-source when it creates
the .dsc source control file as part of a source archive. Some fields are folded in debian/control, but not in any other
control file. These tools are responsible for removing the line breaks from such fields when using fields from debian/

control to generate other control files. They are also responsible for discarding empty fields.

The fields here may contain variable references - their values will be substituted by dpkg-gencontrol,
dpkg-genchanges or dpkg-source when they generate output control files. See Variable substitutions: de-
bian/substvars for details.

5.3 Debian binary package control files – DEBIAN/control

The DEBIAN/control file contains the most vital (and version-dependent) information about a binary package. It
consists of a single stanza.

The fields in this file are:

• Package (mandatory)

• Source

• Version (mandatory)

• Section (recommended)

• Priority (recommended)

• Architecture (mandatory)

• Essential

• Depends et al

• Installed-Size

• Maintainer (mandatory)

• Description (mandatory)

• Homepage

• Built-Using

5.3. Debian binary package control files – DEBIAN/control 33

Debian Policy Manual, Release 4.7.0.2

5.4 Debian source package control files – .dsc

This file consists of a single stanza, possibly surrounded by an OpenPGP signature. The fields of that stanza are listed
below. Their syntax is described above, in Syntax of control files.

• Format (mandatory)

• Source (mandatory)

• Binary

• Architecture

• Version (mandatory)

• Maintainer (mandatory)

• Uploaders

• Homepage

• Version Control System (VCS) fields

• Testsuite

• Dgit

• Standards-Version (mandatory)

• Build-Depends et al

• Package-List (recommended)

• Checksums-Sha1 and Checksums-Sha256 (mandatory)

• Files (mandatory)

The Debian source package control file is generated by dpkg-source when it builds the source archive, from other files
in the source package, described above. When unpacking, it is checked against the files and directories in the other parts
of the source package.

5.5 Debian upload changes control files – .changes

The .changes files are used by the Debian archive maintenance software to process updates to packages. They consist
of a single stanza, possibly surrounded by an OpenPGP signature. That stanza contains information from the debian/
control file and other data about the source package gathered via debian/changelog and debian/rules.

.changes files have a format version that is incremented whenever the documented fields or their meaning change. This
document describes format 1.8.

The fields in this file are:

• Format (mandatory)

• Date (mandatory)

• Source (mandatory)

• Binary (mandatory in some cases)

• Architecture (mandatory)

• Version (mandatory)

• Distribution (mandatory)

34 Chapter 5. Control files and their fields

Debian Policy Manual, Release 4.7.0.2

• Urgency (recommended)

• Maintainer (mandatory)

• Changed-By

• Description (mandatory in some cases)

• Closes

• Changes (mandatory)

• Checksums-Sha1 and Checksums-Sha256 (mandatory)

• Files (mandatory)

5.6 List of fields

5.6.1 Source

This field identifies the source package name.

In debian/control or a .dsc file, this field must contain only the name of the source package.

In a binary package control file or a .changes file, the source package name may be followed by a version number
in parentheses.4 This version number may be omitted (and is, by dpkg-gencontrol) if it has the same value as the
Version field of the binary package in question. The field itself may be omitted from a binary package control file when
the source package has the same name and version as the binary package.

Package names (both source and binary, see Package) must consist only of lower case letters (a-z), digits (0-9), plus
(+) and minus (-) signs, and periods (.). They must be at least two characters long and must start with an alphanumeric
character.

5.6.2 Maintainer

The packagemaintainer’s name and email address. The namemust come first, then the email address inside angle brackets
<> (in RFC822 format).

If the maintainer’s name contains a full stop then the whole field will not work directly as an email address due to a
misfeature in the syntax specified in RFC822; a program using this field as an address must check for this and correct
the problem if necessary (for example by putting the name in round brackets and moving it to the end, and bringing the
email address forward).

See The maintainer of a package for additional requirements and information about package maintainers.

5.6.3 Uploaders

List of the names and email addresses of co-maintainers of the package, if any. If the package has other maintainers
besides the one named in theMaintainer field, their names and email addresses should be listed here. The format of each
entry is the same as that of the Maintainer field, and multiple entries must be comma separated.

This is normally an optional field, but if the Maintainer control field names a group of people and a shared email
address, the Uploaders field must be present and must contain at least one human with their personal email address.

The Uploaders field in debian/control can be folded.

4 It is customary to leave a space after the package name if a version number is specified.

5.6. List of fields 35

Debian Policy Manual, Release 4.7.0.2

5.6.4 Changed-By

The name and email address of the person who prepared this version of the package, usually a maintainer. The syntax is
the same as for the Maintainer field.

5.6.5 Section

This field specifies an application area into which the package has been classified. See Sections.

When it appears in the debian/control file, it gives the value for the subfield of the same name in the Files field of
the .changes file. It also gives the default for the same field in the binary packages.

5.6.6 Priority

This field represents how important it is that the user have the package installed. See Priorities.

When it appears in the debian/control file, it gives the value for the subfield of the same name in the Files field of
the .changes file. It also gives the default for the same field in the binary packages.

5.6.7 Package

The name of the binary package.

Binary package names must follow the same syntax and restrictions as source package names. See Source for the details.

5.6.8 Architecture

Depending on context and the control file used, the Architecture field can include the following sets of values:

• A unique single word identifying a Debian machine architecture as described in Architecture specification strings.

• An architecture wildcard identifying a set of Debian machine architectures, see Architecture wildcards. any

matches all Debian machine architectures and is the most frequently used.

• all, which indicates an architecture-independent package.

• source, which indicates a source package.

In the main debian/control file in the source package, this field may contain the special value all, the special archi-
tecture wildcard any, or a list of specific and wildcard architectures separated by spaces. If all or any appears, that
value must be the entire contents of the field. Most packages will use either all or any.

Specifying a specific list of architectures indicates that the source will build an architecture-dependent package only
on architectures included in the list. Specifying a list of architecture wildcards indicates that the source will build an
architecture-dependent package on only those architectures that match any of the specified architecture wildcards. Spec-
ifying a list of architectures or architecture wildcards other than any is for the minority of cases where a program is not
portable or is not useful on some architectures. Where possible, the program should be made portable instead.

In the Debian source package control file .dsc, this field contains a list of architectures and architecture wildcards
separated by spaces. When the list contains the architecture wildcard any, the only other value allowed in the list is all.

The list may include (or consist solely of) the special value all. In other words, in .dsc files unlike the debian/
control, all may occur in combination with specific architectures. The Architecture field in the Debian source
package control file .dsc is generally constructed from the Architecture fields in the debian/control in the source
package.

Specifying only any indicates that the source package isn’t dependent on any particular architecture and should compile
fine on any one. The produced binary package(s) will be specific to whatever the current build architecture is.

Specifying only all indicates that the source package will only build architecture-independent packages.

36 Chapter 5. Control files and their fields

Debian Policy Manual, Release 4.7.0.2

Specifying any all indicates that the source package isn’t dependent on any particular architecture. The set of produced
binary packages will include at least one architecture-dependent package and one architecture-independent package.

Specifying a list of architectures or architecture wildcards indicates that the source will build an architecture-dependent
package, and will only work correctly on the listed or matching architectures. If the source package also builds at least
one architecture-independent package, all will also be included in the list.

In a .changes file, the Architecture field lists the architecture(s) of the package(s) currently being uploaded. This
will be a list; if the source for the package is also being uploaded, the special entry source is also present. all will
be present if any architecture-independent packages are being uploaded. Architecture wildcards such as any must never
occur in the Architecture field in the .changes file.

See Main building script: debian/rules for information on how to get the architecture for the build process.

5.6.9 Essential

This is a boolean field which may occur only in the control file of a binary package or in a binary package stanza of a
source package template control file.

If set to yes then the package management system will refuse to remove the package (upgrading and replacing it is still
possible). The other possible value is no, which is the same as not having the field at all.

5.6.10 Package interrelationship fields: Depends, Pre-Depends, Recommends, Sug-
gests, Breaks, Conflicts, Provides, Replaces, Enhances

These fields describe the package’s relationships with other packages. Their syntax and semantics are described inDeclar-
ing relationships between packages.

5.6.11 Standards-Version

The most recent version of the standards (the policy manual and associated texts) with which the package complies. See
Standards conformance.

The version number has four components: major and minor version number and major and minor patch level. When the
standards change in a way that requires every package to change the major number will be changed. Significant changes
that will require work in many packages will be signaled by a change to the minor number. The major patch level will
be changed for any change to the meaning of the standards, however small; the minor patch level will be changed when
only cosmetic, typographical or other edits are made which neither change the meaning of the document nor affect the
contents of packages.

Thus only the first three components of the policy version are significant in the Standards-Version control field, and so
either these three components or all four components may be specified.5

udebs and source packages that only produce udebs do not use Standards-Version.

5.6.12 Version

The version number of a package. The format is: [epoch:]upstream_version[-debian_revision].

The three components here are:

epoch

This is a single (generally small) unsigned integer. It may be omitted, in which case zero is assumed.

Epochs can help when the upstream version numbering scheme changes, but they must be used with care. You
should not change the epoch, even in experimental, without getting consensus on debian-devel first.

5 In the past, people specified the full version number in the Standards-Version field, for example “2.3.0.0”. Since minor patch-level changes don’t
introduce new policy, it was thought it would be better to relax policy and only require the first 3 components to be specified, in this example “2.3.0”.
All four components may still be used if someone wishes to do so.

5.6. List of fields 37

Debian Policy Manual, Release 4.7.0.2

upstream_version

This is the main part of the version number. It is usually the version number of the original (“upstream”) package
from which the .deb file has been made, if this is applicable. Usually this will be in the same format as that
specified by the upstream author(s); however, it may need to be reformatted to fit into the package management
system’s format and comparison scheme.

The comparison behavior of the packagemanagement systemwith respect to the upstream_version is described
below. The upstream_version portion of the version number is mandatory.

The upstream_version must contain only alphanumerics6 and the characters . + - ~ (full stop, plus, hyphen,
tilde) and should start with a digit. If there is no debian_revision then hyphens are not allowed.

debian_revision

This part of the version number specifies the version of the Debian package based on the upstream version. It must
contain only alphanumerics and the characters + . ~ (plus, full stop, tilde) and is compared in the same way as the
upstream_version is.

It is conventional to restart the debian_revision at 1 each time the upstream_version is increased.

The package management system will break the version number apart at the last hyphen in the string (if there is
one) to determine the upstream_version and debian_revision. The absence of a debian_revision is
equivalent to a debian_revision of 0.

Presence of the debian_revision part indicates this package is a non-native package (see Source packages).
Absence indicates the package is a native package.

When comparing two version numbers, first the epoch of each are compared, then the upstream_version if epoch
is equal, and then debian_revision if upstream_version is also equal. epoch is compared numerically. The up-
stream_version and debian_revision parts are compared by the package management system using the following
algorithm:

The strings are compared from left to right.

First the initial part of each string consisting entirely of non-digit characters is determined. These two parts (one of which
may be empty) are compared lexically. If a difference is found it is returned. The lexical comparison is a comparison of
ASCII values modified so that all the letters sort earlier than all the non-letters and so that a tilde sorts before anything,
even the end of a part. For example, the following parts are in sorted order from earliest to latest: ~~, ~~a, ~, the empty
part, a.7

Then the initial part of the remainder of each string which consists entirely of digit characters is determined. The nu-
merical values of these two parts are compared, and any difference found is returned as the result of the comparison. For
these purposes an empty string (which can only occur at the end of one or both version strings being compared) counts
as zero.

These two steps (comparing and removing initial non-digit strings and initial digit strings) are repeated until a difference
is found or both strings are exhausted.

5.6.12.1 Epochs should be used sparingly

Note that the purpose of epochs is to cope with situations where the upstream version numbering scheme changes and to
allow us to leave behind serious mistakes. If you think that increasing the epoch is the right solution, you should consult
debian-devel and get consensus before doing so (even in experimental).

Epochs should not be used when a package needs to be rolled back. In that case, use the +really convention: for
example, if you uploaded 2.3-3 and now you need to go backwards to upstream 2.2, call your reverting upload something
like 2.3+really2.2-1. Eventually, when we upload upstream 2.4, the +really part can go away.

6 Alphanumerics are A-Za-z0-9 only.
7 One common use of ~ is for upstream pre-releases. For example, 1.0~beta1~svn1245 sorts earlier than 1.0~beta1, which sorts earlier than

1.0.

38 Chapter 5. Control files and their fields

Debian Policy Manual, Release 4.7.0.2

Epochs are also not intended to cope with version numbers containing strings of letters which the package management
system cannot interpret (such as ALPHA or pre-), or with silly orderings.8

5.6.12.2 Special version conventions

The following special version numbering conventions are used in the Debian archive:

• The absence of debian_revision, and therefore of a hyphen in the version number, indicates that the package
is native.

• The presence of +really in the upstream_version component indicates that a newer upstream version has been
rolled back to an older upstream version. The part of the upstream_version component following +really is
the true upstream version. See Epochs should be used sparingly for an example of when this is used.

Non-maintainer uploads:

• debian_revision components ending in . (period) followed by a number indicate this version of the non-native
package was uploaded by someone other than the maintainer (an NMU or non-maintainer upload). This is used for
a upload including a source package; for uploads of only binary packages without source changes, see the binary
NMU convention below.

• upstream_version components in native packages ending in +nmu followed by a number indicate an NMU of
a native package. As with the convention for non-native packages, this is used for an upload including a source
package, not for uploads of only binary packages without source changes.

• upstream_version components in native packages or debian_revision components in non-native packages
ending in +b followed by a number indicate a binary NMU: an upload of a binary package without any source
changes and hence without any corresponding source package upload or version change.

Stable updates:

• debian_revision components in non-native packages ending in debNuX also indicate a stable update. Either ~
or + will be used before this string depending on the details of the update. N is the major version number of the
Debian stable release to which the package was uploaded, and X is a number, starting at 1, that is increased for
each stable upload of this package.

There are three cases for non-native packages:

1. For stable updates that use the same upstream version, the debian_revision component will end in +deb-
NuX. The portion of the version before that string is the original package version in the stable release.

2. For stable updates to a new upstream version that is based on a newer unstable package, the de-

bian_revision component will end in ~debNuX. The portion before that string will be the unstable version
on which the package is based.

3. If a stable update is based on a new upstream version but is not based on a newer unstable package, the
convention is to form the version number by taking the upstream version, appending -0, and then appending
+debNuX (so the debian_revision component will be 0+debNuX).

In all cases, these versions are chosen so that they will sort earlier than a subsequent unstable package of the same
upstream version and thus that the stable package will upgrade to a newer version during a subsequent system
upgrade.

For example, suppose Debian 10 released with a package with version 1.4-5. If that package later receives a stable
update in Debian 10 that uses the same upstream version, the first update would have the version 1.4-5+deb10u1.
A subsequent update would have version 1.4-5+deb10u2.

If instead the package receives a stable update based on a 1.5-1 unstable package, the first such stable update
would have the version 1.5-1~deb10u1 and a subsequent update would have the version 1.5-1~deb10u2.

8 The author of this manual has heard of a package whose versions went 1.1, 1.2, 1.3, 1, 2.1, 2.2, 2 and so forth.

5.6. List of fields 39

Debian Policy Manual, Release 4.7.0.2

If there were no unstable 1.5-1 package, but there were a stable update to an upstream 1.5 release, the first such
stable update would have the version 1.5-0+deb10u1.

• upstream_version components in native packages ending in +debNuX indicate a stable update. This is a version
of the package uploaded directly to a stable release, and the version is chosen to sort before any later version of the
package uploaded to Debian’s unstable or a later stable distribution. As with non-native packages, N is the major
version number of the Debian stable release to which the package was uploaded, and X is a number, starting at 1,
that is increased for each stable upload of this package.

For example, suppose Debian 10 released with a package with version 1.4. The first stable update of that package
would have the version 1.4+deb10u1, and a subsequent update would have the version 1.4+deb10u2. These
versions are chosen to sort before 1.5 (the next unstable version) or 1.4+deb11u1 (a stable update to a subsequent
Debian 11 release).

Backports:

• upstream_version components in native packages or debian_revision components in non-native packages
ending in ~bpoNuX indicate a backport of a version of the package to an older stable release. The part of the
version before ~bpo is the version of the package being backported, N is the major version number of the Debian
stable release to which the package was backported, and X is a number, starting at 1, that is increased for each
revision of the backport of that package version. The rationale is the same as for stable updates, with the additional
goal of ensuring a backported version sorts earlier than a stable update with the same upstream version.

Be aware that the stable update and backport conventions can stack. If, for example, Debian 10 contains a package
with version 1.4-5+deb10u1 and that package is backported to Debian 9, the version of the Debian 9 backport
would be 1.4-5+deb10u1~bpo9u1 (although this scenario is rare).

This list of version conventions is not exhaustive.

5.6.13 Description

In a source template control file or binary control file, the Description field contains a description of the binary
package, consisting of two parts, the synopsis or the short description, and the long description. It is a multiline field with
the following format:

Description: single line synopsis

extended description over several lines

The lines in the extended description can have these formats:

• Those starting with a single space are part of a paragraph. Successive lines of this form will be word-wrapped
when displayed. The leading space will usually be stripped off. The line must contain at least one non-whitespace
character.

• Those starting with two or more spaces. These will be displayed verbatim. If the display cannot be panned hor-
izontally, the displaying program will line wrap them “hard” (i.e., without taking account of word breaks). If it
can they will be allowed to trail off to the right. None, one or two initial spaces may be deleted, but the number of
spaces deleted from each line will be the same (so that you can have indenting work correctly, for example). The
line must contain at least one non-whitespace character.

• Those containing a single space followed by a single full stop character. These are rendered as blank lines. This is
the only way to get a blank line.9

• Those containing a space, a full stop and some more characters. These are for future expansion. Do not use them.

Do not use tab characters. Their effect is not predictable.

See The description of a package for further information on this.

9 Completely empty lines will not be rendered as blank lines. Instead, they will cause the parser to think you’re starting a whole new record in the
control file, and will therefore likely abort with an error.

40 Chapter 5. Control files and their fields

Debian Policy Manual, Release 4.7.0.2

In a .changes file, the Description field contains a summary of the descriptions of the binary packages being up-
loaded. If no binary packages are being uploaded, this field will not be present.

When used inside a .changes file, the Description field has a different format than in source or binary control files.
It is a multiline field with one line per binary package. The first line of the field value (the part on the same line as
Description:) is always empty. Each subsequent line is indented by one space and contains the name of a binary
package, a space, a hyphen (-), a space, and the short description line from that package.

5.6.14 Distribution

In a .changes file or parsed changelog output this contains the (space-separated) name(s) of the distribution(s) where this
version of the package should be installed. Valid distributions are determined by the archive maintainers.10 The Debian
archive software only supports listing a single distribution. Migration of packages to other distributions is handled outside
of the upload process.

5.6.15 Date

This field includes the date the package was built or last edited. It must be in the same format as the date in a debian/
changelog entry.

The value of this field is usually extracted from the debian/changelog file - see Debian changelog: debian/changelog).

5.6.16 Format

In .changes files, this field declares the format version of that file. The syntax of the field value is the same as that of
a package version number except that no epoch or Debian revision is allowed. The format described in this document is
1.8.

In .dsc Debian source control files, this field declares the format of the source package. The field value is used by
programs acting on a source package to interpret the list of files in the source package and determine how to unpack it.
The syntax of the field value is a numeric major revision, a period, a numeric minor revision, and then an optional subtype
after whitespace, which if specified is an alphanumeric word in parentheses. The subtype is optional in the syntax but
may be mandatory for particular source format revisions.11

5.6.17 Urgency

This is a description of how important it is to upgrade to this version from previous ones. It consists of a single keyword
taking one of the values low, medium, high, emergency, or critical12 (not case-sensitive) followed by an optional
commentary (separated by a space) which is usually in parentheses. For example:

Urgency: low (HIGH for users of diversions)

The value of this field is usually extracted from the debian/changelog file - see Debian changelog: debian/changelog.

10 Example distribution names in the Debian archive used in .changes files are:

unstable
This distribution value refers to the developmental part of the Debian distribution tree. Most new packages, new upstream versions of packages
and bug fixes go into the unstable directory tree.

experimental
The packages with this distribution value are deemed by their maintainers to be high risk. Oftentimes they represent early beta or developmental
packages from various sources that the maintainers want people to try, but are not ready to be a part of the other parts of the Debian distribution
tree.

Others are used for updating stable releases or for security uploads. More information is available in the Debian Developer’s Reference, section “The
Debian archive”.

11 The source formats currently supported by the Debian archive software are 1.0, 3.0 (native), and 3.0 (quilt).
12 Other urgency values are supported with configuration changes in the archive software but are not used in Debian. The urgency affects how quickly

a package will be considered for inclusion into the testing distribution and gives an indication of the importance of any fixes included in the upload.
Emergency and critical are treated as synonymous.

5.6. List of fields 41

Debian Policy Manual, Release 4.7.0.2

5.6.18 Changes

This multiline field contains the human-readable changes data, describing the differences between the last version and the
current one.

The first line of the field value (the part on the same line as Changes:) is always empty. The content of the field is
expressed as continuation lines, with each line indented by at least one space. Blank lines must be represented by a line
consisting only of a space and a full stop (.).

The value of this field is usually extracted from the debian/changelog file - see Debian changelog: debian/changelog.

Each version’s change information should be preceded by a “title” line giving at least the version, distribution(s) and
urgency, in a human-readable way.

If data from several versions is being returned the entry for the most recent version should be returned first, and entries
should be separated by the representation of a blank line (the “title” line may also be followed by the representation of a
blank line).

5.6.19 Binary

This folded field is a list of binary packages. Its syntax and meaning varies depending on the control file in which it
appears.

When it appears in the .dsc file, it lists binary packages which a source package can produce, separated by commas13.
The source package does not necessarily produce all of these binary packages for every architecture. The source control
file doesn’t contain details of which architectures are appropriate for which of the binary packages.

When it appears in a .changes file, it lists the names of the binary packages being uploaded, separated by whitespace
(not commas). If no binary packages are being uploaded, this field will not be present.

5.6.20 Installed-Size

This field appears in the binary package control files, and in the Packages files. It gives an estimate of the total amount
of disk space required to install the named package. Actual installed size may vary based on block size, file system
properties, or actions taken by package maintainer scripts.

The disk space is given as the accumulated size of each regular file and symlink rounded to 1 KiB used units, and a
baseline of 1 KiB for any other filesystem object type.

5.6.21 Files

This field contains a list of files with information about each one. The exact information and syntax varies with the context.

In all cases, Files is a multiline field. The first line of the field value (the part on the same line as Files:) is always
empty. The content of the field is expressed as continuation lines, one line per file. Each line must be indented by one
space and contain a number of sub-fields, separated by spaces, as described below.

In the .dsc file, each line contains the MD5 checksum, size and filename of the tar file and (if applicable) diff file which
make up the remainder of the source package.14 For example:

Files:

c6f698f19f2a2aa07dbb9bbda90a2754 571925 example_1.2.orig.tar.gz

938512f08422f3509ff36f125f5873ba 6220 example_1.2-1.diff.gz

The exact forms of the filenames are described in Source packages as archives.

In the .changes file this contains one line per file being uploaded. Each line contains the MD5 checksum, size, section
and priority and the filename. For example:

13 A space after each comma is conventional.
14 That is, the parts which are not the .dsc.

42 Chapter 5. Control files and their fields

Debian Policy Manual, Release 4.7.0.2

Files:

4c31ab7bfc40d3cf49d7811987390357 1428 text extra example_1.2-1.dsc

c6f698f19f2a2aa07dbb9bbda90a2754 571925 text extra example_1.2.orig.tar.gz

938512f08422f3509ff36f125f5873ba 6220 text extra example_1.2-1.diff.gz

7c98fe853b3bbb47a00e5cd129b6cb56 703542 text extra example_1.2-1_i386.deb

The section and priority are the values of the corresponding fields in the source template control file. If no section or
priority is specified then - should be used, though section and priority values must be specified for new packages to be
installed properly.

The special value byhand for the section in a .changes file indicates that the file in question is not an ordinary package
file and must be installed by hand by the distribution maintainers. If the section is byhand the priority should be -.

If a new Debian revision of a package is being shipped and no new original source archive is being distributed the .dsc
must still contain the Files field entry for the original source archive package_upstream-version.orig.tar.gz,
but the .changes file should leave it out. In this case the original source archive on the distribution site must match
exactly, byte-for-byte, the original source archive which was used to generate the .dsc file and diff which are being
uploaded.

5.6.22 Closes

A space-separated list of bug report numbers that the upload governed by the .changes file closes.

5.6.23 Homepage

The URL of the web site for this package, preferably (when applicable) the site from which the original source can be
obtained and any additional upstream documentation or information may be found. The content of this field is a simple
URL without any surrounding characters such as <>.

5.6.24 Checksums-Sha1 and Checksums-Sha256

These multiline fields contain a list of files with a checksum and size for each one. Both Checksums-Sha1

and Checksums-Sha256 have the same syntax and differ only in the checksum algorithm used: SHA-1 for
Checksums-Sha1 and SHA-256 for Checksums-Sha256.

Checksums-Sha1 and Checksums-Sha256 aremultiline fields. The first line of the field value (the part on the same line
as Checksums-Sha1: or Checksums-Sha256:) is always empty. The content of the field is expressed as continuation
lines, one line per file. Each line consists of the checksum, a space, the file size, a space, and the file name. For example
(from a .changes file):

Checksums-Sha1:

1f418afaa01464e63cc1ee8a66a05f0848bd155c 1276 example_1.0-1.dsc

a0ed1456fad61116f868b1855530dbe948e20f06 171602 example_1.0.orig.tar.gz

5e86ecf0671e113b63388dac81dd8d00e00ef298 6137 example_1.0-1.debian.tar.gz

71a0ff7da0faaf608481195f9cf30974b142c183 548402 example_1.0-1_i386.deb

Checksums-Sha256:

ac9d57254f7e835bed299926fd51bf6f534597cc3fcc52db01c4bffedae81272 1276 example_1.0-1.

↪→dsc

0d123be7f51e61c4bf15e5c492b484054be7e90f3081608a5517007bfb1fd128 171602 example_1.0.

↪→orig.tar.gz

f54ae966a5f580571ae7d9ef5e1df0bd42d63e27cb505b27957351a495bc6288 6137 example_1.0-1.

↪→debian.tar.gz

3bec05c03974fdecd11d020fc2e8250de8404867a8a2ce865160c250eb723664 548402 example_1.0-

↪→1_i386.deb

5.6. List of fields 43

Debian Policy Manual, Release 4.7.0.2

In the .dsc file, these fields list all files that make up the source package. In the .changes file, these fields list all files
being uploaded. The list of files in these fields must match the list of files in the Files field.

5.6.25 DM-Upload-Allowed

Obsolete, see below.

5.6.26 Version Control System (VCS) fields

Debian source packages are increasingly developed using VCSs. The purpose of the following fields is to indicate a
publicly accessible repository where the Debian source package is developed.

Vcs-Browser

URL of a web interface for browsing the repository.

Vcs-<type>

The field name identifies the VCS. The field’s value uses the version control system’s conventional syntax for de-
scribing repository locations and should be sufficient to locate the repository used for packaging. Ideally, it also
locates the branch used for development of new versions of the Debian package.

The following values for <type> are supported, with the corresponding VCS indicated in parentheses if it isn’t
obvious:

• Arch

• Bzr (Bazaar)

• Cvs (CVS)

• Darcs

• Git

• Hg (Mercurial)

• Mtn (Monotone)

• Svn (Subversion)

In the case of Git, the value must have the following syntax:

<url> [" -b " <branch>] [" [" <path> "]"]

where the portions enclosed in brackets are optional and the portions enclosed in double quotes are literal strings.
<url> indicates the repository. If the <branch> portion is present, it names a branch in the indicated repository.
If no branch is specified, the packaging should be on the default branch. If the <path> portion is present, it
specifies the relative path to the top of the packaging tree (the parent directory of the debian directory). If no
path is specified, it defaults to . (the top level of the indicated repository and branch).

For example:

Vcs-Git: https://example.org/repo -b debian [p/package]

indicates a subdirectory named p/package in the debian branch of the repository at https://example.org/
repo.

In the case of Mercurial, the value must have the following syntax:

<url> [" -b " <branch>]

44 Chapter 5. Control files and their fields

Debian Policy Manual, Release 4.7.0.2

This is interpreted the same way as the Git syntax except a path within the repository is not supported.

A package control file must not have more than one Vcs-<type> field. If the package is maintained in multiple
version control systems, the maintainer should specify the one that they would prefer other people to use as the
basis for proposing changes to the package.

For both fields, any URLs given should use a scheme that provides confidentiality (https, for example, rather than http
or git) if the VCS repository supports it.

5.6.27 Package-List

Multiline field listing all the packages that can be built from the source package, considering every architecture. The
first line of the field value is empty. Each one of the next lines describes one binary package, by listing its name, type,
section and priority separated by spaces. Fifth and subsequent space-separated items may be present and parsers must
allow them. See the Package-Type field for a list of package types.

5.6.28 Package-Type

Simple field containing a word indicating the type of package: deb for binary packages and udeb for micro binary
packages. Other types not defined here may be indicated. In source package template control files, the Package-Type
field should be omitted instead of giving it a value of deb, as this value is assumed for stanzas lacking this field.

5.6.29 Dgit

Folded field containing a single git commit hash, presented in full, followed optionally by whitespace and other data to
be defined in future extensions.

Declares that the source package corresponds exactly to a referenced commit in a Git repository available at the canonical
location called dgit-repos, used by dgit, a bidirectional gateway between the Debian archive and Git. The commit is
reachable from at least one reference whose name matches refs/dgit/*. See the manual page of dgit for further
details.

5.6.30 Testsuite

Simple field containing a comma-separated list of values allowing test execution environments to discover packages which
provide tests.

This field is automatically added to Debian source control files (.dsc) by dpkg, with the value autopkgtest, when a
debian/tests/control file is present in the source package. This field may also be used in source package template
control files (debian/control) if needed in other situations.

5.6.31 Rules-Requires-Root

Simple field that defines if the source package requires access to root (or fakeroot) during selected targets in the Main
building script: debian/rules.

The field can consist of exactly one of the following three items:

• no (default at dpkg-build-api level >=1): Declares that neither root nor fakeroot is required. Package builders (e.g.
dpkg-buildpackage) may choose to invoke any target in debian/rules with an unprivileged user.

• binary-targets (default at dpkg-build-api level 0): Declares that the package will need the root (or fakeroot)
when either of the binary, binary-arch or binary-indep targets are called. This is how every tool behaved
before this field was defined.

• A space separated list of keywords described below. These keywords must always contain a forward slash, which
sets them apart from the other possible values of Rules-Requires-Root. When this list is provided, the builder
must provide a “gain root command” (as defined in debian/rules and Rules-Requires-Root) or pretend that the value

5.6. List of fields 45

Debian Policy Manual, Release 4.7.0.2

was set to binary-targets, and both the builder and the package’s debian/rules script must downgrade
accordingly (see below).

The default depends on the dpkg-build-api level (see dpkg-build-api(7)). If the dpkg-build-api level is undeclared, it is
equivalent to level 0.

If the package builder supports the Rules-Requires-Root field and wants to enable the feature, then it must set the
environment variable DEB_RULES_REQUIRES_ROOT when invoking the package building script debian/rules. The
value of DEB_RULES_REQUIRES_ROOT should be one of:

• The value of Rules-Requires-Root if the builder can support that value. The builder may trim unnecessary
whitespace used to format the field for readability.

• The value binary-targets if it cannot support the value of Rules-Requires-Root.

A compliant builder may also leave DEB_RULES_REQUIRES_ROOT unset or set it to binary-targets if it has been
requested to test whether the package it builds correctly implements the fall-back for legacy builders.

5.6.31.1 Remarks

All packages and builders must support binary-targets as this was the historical behaviour prior to the introduction
of this field.

Any tool (particularly older versions of them) may be unaware of this field and behave like the field was set to
binary-targets. The package build must gracefully cope with this and produce a semantically equivalent result.

This field intentionally does not enable a package to request a true root over fakeroot.

5.6.31.2 Definition of the keywords

The keywords have the format <namespace>/<case>, where:

• <namespace>must consist entirely of printable ASCII characters except for any whitespace and the forward slash
(/). It must consist of at least 2 characters.

• / (between <namespace> and <case>) is a single ASCII forward slash.

• <case> must consist entirely of printable ASCII characters except for any whitespace. It must consist of at least
2 characters.

These keywords define where the package build script debian/rules, or the tools called by that script, will need access
to root or fakeroot.

In addition to the keywords defined in the next section, each tool or package may define keywords within a namespace
named after that tool or package. The package or tool is considered to own that namespace.

A tool is permitted to use the “gain root command” to do something under (fake)root if and only if the tool defines an
appropriate keyword in its namespace, and the package lists that keyword in Rules-Requires-Root.

All tools must ignore keywords under namespaces they do not know or own. A tool may emit a warning, or abort with
an error, if it finds unknown keywords in namespaces it owns, but it is not required to do this for all keywords in the
namespace.

5.6.31.3 Provided keywords

The following keywords are defined:

• dpkg/target-subcommand: declares that there exists a command that the debian/rules file must run under
(fake)root

• dpkg/target/foo: declares that the additional, package-specific target foo (that is, not one of the targets spec-
ified in Main building script: debian/rules) must be run under (fake)root

46 Chapter 5. Control files and their fields

Debian Policy Manual, Release 4.7.0.2

This list is intentionally incomplete. You should consult the documentation of the tool or package in question for which
keywords it defines and when they are needed.

5.7 User-defined fields

Additional user-defined fields may be added to the source package template control file. Such fields will be ignored, and
not copied to (for example) binary or Debian source control files or Debian upload changes control files.

If you wish to add additional unsupported fields to these output files you should use the mechanism described here.

Fields in the source package template control file with names starting X, followed by one or more of the letters BCS and
a hyphen -, will be copied to the output files. Only the part of the field name after the hyphen will be used in the output
file. Where the letter B is used the field will appear in binary package control files, where the letter S is used in Debian
source control files and where C is used in Debian upload changes control files.

For example, if the source package template control file contains the field

XBS-Comment: I stand between the candle and the star.

then the binary and Debian source control files will contain the field

Comment: I stand between the candle and the star.

5.8 Obsolete fields

The following fields have been obsoleted and may be found in packages conforming with previous versions of the Policy.

5.8.1 DM-Upload-Allowed

Indicates that Debian Maintainers may upload this package to the Debian archive. The only valid value is yes. This
field was used to regulate uploads by Debian Maintainers, See the General Resolution Endorse the concept of Debian
Maintainers for more details.

5.7. User-defined fields 47

https://www.debian.org/vote/2007/vote_003
https://www.debian.org/vote/2007/vote_003

Debian Policy Manual, Release 4.7.0.2

48 Chapter 5. Control files and their fields

CHAPTER

SIX

PACKAGE MAINTAINER SCRIPTS AND INSTALLATION PROCEDURE

6.1 Introduction to package maintainer scripts

It is possible to supply scripts as part of a package which the package management system will run for you when your
package is installed, upgraded or removed.

These scripts are the package metadata files preinst, postinst, prerm and postrm. They must be proper executable
files; if they are scripts (which is recommended), they must start with the usual #! convention. They should be readable
and executable by anyone, and must not be world-writable.

The package management system looks at the exit status from these scripts. It is important that they exit with a non-zero
status if there is an error, so that the package management system can stop its processing. For shell scripts this means
that you almost always need to use set -e (this is usually true when writing shell scripts, in fact). It is also important,
of course, that they exit with a zero status if everything went well.

Additionally, packages interacting with users using debconf in the postinst script should install a config script as a
package metadata file. See Prompting in maintainer scripts for details.

When a package is upgraded a combination of the scripts from the old and new packages is called during the upgrade
procedure. If your scripts are going to be at all complicated you need to be aware of this, and may need to check the
arguments to your scripts.

Broadly speaking the preinst is called before (a particular version of) a package is unpacked, and the postinst
afterwards; the prerm before (a version of) a package is removed and the postrm afterwards.

Programs called frommaintainer scripts should not normally have a path prepended to them. Before installation is started,
the package management system checks to see if the programs ldconfig, start-stop-daemon, and update-rc.d
can be found via the PATH environment variable. Those programs, and any other program that one would expect to be
in the PATH, should thus be invoked without an absolute pathname. Maintainer scripts should also not reset the PATH,
though they might choose to modify it by prepending or appending package-specific directories. These considerations
really apply to all shell scripts.

6.2 Maintainer scripts idempotency

It is necessary for the error recovery procedures that the scripts be idempotent. This means that if it is run successfully,
and then it is called again, it doesn’t bomb out or cause any harm, but just ensures that everything is the way it ought to
be. If the first call failed, or aborted half way through for some reason, the second call should merely do the things that
were left undone the first time, if any, and exit with a success status if everything is OK.1

1 This is so that if an error occurs, the user interrupts dpkg or some other unforeseen circumstance happens you don’t leave the user with a badly-
broken package when dpkg attempts to repeat the action.

49

Debian Policy Manual, Release 4.7.0.2

6.3 Controlling terminal for maintainer scripts

Maintainer scripts are not guaranteed to run with a controlling terminal and may not be able to interact with the user.
They must be able to fall back to noninteractive behavior if no controlling terminal is available. Maintainer scripts that
prompt via a program conforming to the Debian Configuration Management Specification (see Prompting in maintainer
scripts) may assume that program will handle falling back to noninteractive behavior.

For high-priority prompts without a reasonable default answer, maintainer scripts may abort if there is no controlling
terminal. However, this situation should be avoided if at all possible, since it prevents automated or unattended installs.
In most cases, users will consider this to be a bug in the package.

6.4 Exit status

Each script must return a zero exit status for success, or a nonzero one for failure, since the package management system
looks for the exit status of these scripts and determines what action to take next based on that datum.

6.5 Summary of ways maintainer scripts are called

What follows is a summary of all the ways in which maintainer scripts may be called along with what facilities those
scripts may rely on being available at that time. Script names preceded by new- are the scripts from the new version of
a package being installed, upgraded to, or downgraded to. Script names preceded by old- are the scripts from the old
version of a package that is being upgraded from or downgraded from.

The preinst script may be called in the following ways:

new-preinst install
new-preinst install old-version new-version
new-preinst upgrade old-version new-version

The package will not yet be unpacked, so the preinst script cannot rely on any files included in its pack-
age. Only essential packages and pre-dependencies (Pre-Depends) may be assumed to be available. Pre-
dependencies will have been configured at least once, but at the time the preinst is called they may only
be in an “Unpacked” or “Half-Configured” state if a previous version of the pre-dependency was completely
configured and has not been removed since then.

old-preinst abort-upgrade new-version
Called during error handling of an upgrade that failed after unpacking the new package because the postrm
upgrade action failed. The unpacked files may be partly from the new version or partly missing, so the script
cannot rely on files included in the package. Package dependencies may not be available. Pre-dependencies will
be at least “Unpacked” following the same rules as above, except they may be only “Half-Installed” if an upgrade
of the pre-dependency failed.2

The postinst script may be called in the following ways:

postinst configure most-recently-configured-version
The files contained in the package will be unpacked. All package dependencies will at least be “Unpacked”. If
there are no circular dependencies involved, all package dependencies will be configured. For behavior in the case
of circular dependencies, see the discussion in Binary Dependencies - Depends, Recommends, Suggests, Enhances,
Pre-Depends.

old-postinst abort-upgrade new-version
2 This can happen if the new version of the package no longer pre-depends on a package that had been partially upgraded.

50 Chapter 6. Package maintainer scripts and installation procedure

Debian Policy Manual, Release 4.7.0.2

conflictor's-postinst abort-remove in-favour package new-version
postinst abort-remove
deconfigured's-postinst abort-deconfigure in-favour failed-install-package version [removing
conflicting-package version]

The files contained in the package will be unpacked. All package dependencies will at least be “Half-
Installed” and will have previously been configured and not removed. However, dependencies may not be
configured or even fully unpacked in some error situations.3 The postinst should still attempt any actions
for which its dependencies are required, since they will normally be available, but consider the correct error
handling approach if those actions fail. Aborting the postinst action if commands or facilities from the
package dependencies are not available is often the best approach.

The prerm script may be called in the following ways:

prerm remove
old-prerm upgrade new-version
conflictor's-prerm remove in-favour package new-version
deconfigured's-prerm deconfigure in-favour package-being-installed version [removing conflicting-package
version]

The package whose prerm is being called will be at least “Half-Installed”. All package dependencies will at
least be “Half-Installed” and will have previously been configured and not removed. If there was no error,
all dependencies will at least be “Unpacked”, but these actions may be called in various error states where
dependencies are only “Half-Installed” due to a partial upgrade.

new-prerm failed-upgrade old-version new-version
Called during error handling when prerm upgrade fails. The new package will not yet be unpacked, and all the
same constraints as for preinst upgrade apply.

The postrm script may be called in the following ways:

postrm remove
postrm purge
old-postrm upgrade new-version
disappearer's-postrm disappear overwriter overwriter-version

The postrm script is called after the package’s files have been removed or replaced. The package whose
postrm is being called may have previously been deconfigured and only be “Unpacked”, at which point
subsequent package changes do not consider its dependencies. Therefore, all postrm actions must only rely
on essential packages and must gracefully skip any actions that require the package’s dependencies if those
dependencies are unavailable.4

new-postrm failed-upgrade old-version new-version
Called when the old postrm upgrade action fails. The new package will be unpacked, but only essential packages

3 For example, suppose packages foo and bar are “Installed” with foo depending on bar. If an upgrade of bar were started and then aborted, and
then an attempt to remove foo failed because its prerm script failed, foo’s postinst abort-remove would be called with bar only “Half-Installed”.

4 This is often done by checking whether the command or facility the postrm intends to call is available before calling it. For example:

if ["$1" = purge] && [-e /usr/share/debconf/confmodule]; then

. /usr/share/debconf/confmodule db_purge

fi

in postrm purges the debconf configuration for the package if debconf is installed.

6.5. Summary of ways maintainer scripts are called 51

Debian Policy Manual, Release 4.7.0.2

and pre-dependencies can be relied on. Pre-dependencies will either be configured or will be “Unpacked” or “Half-
Configured” but previously had been configured and was never removed.

new-postrm abort-install
new-postrm abort-install old-version new-version
new-postrm abort-upgrade old-version new-version

Called before unpacking the new package as part of the error handling of preinst failures. May assume
the same state as preinst can assume.

6.6 Details of unpack phase of installation or upgrade

The procedure on installation/upgrade/overwrite/disappear (i.e., when running dpkg --unpack, or the unpack stage of
dpkg --install) is as follows.5 In each case, if a major error occurs (unless listed below) the actions are, in general,
run backwards - this means that the maintainer scripts are run with different arguments in reverse order. These are the
“error unwind” calls listed below.

1. Notify the currently installed package:

a. If a version of the package is already “Installed”, call

old-prerm upgrade new-version

b. If the script runs but exits with a non-zero exit status, dpkg will attempt:

new-prerm failed-upgrade old-version new-version

If this works, the upgrade continues. If this does not work, the error unwind:

old-postinst abort-upgrade new-version

If this works, then the old-version is “Installed”, if not, the old version is in a “Half-Configured” state.

2. If a “conflicting” package is being removed at the same time, or if any package will be broken (due to Breaks):

a. If --auto-deconfigure is specified, call, for each package to be deconfigured due to Breaks:

deconfigured's-prerm deconfigure \

in-favour package-being-installed version

Error unwind:

deconfigured's-postinst abort-deconfigure \

in-favour package-being-installed-but-failed version

The deconfigured packages are marked as requiring configuration, so that if --install is used they will be
configured again if possible.

b. If any packages depended on a conflicting package being removed and --auto-deconfigure is specified,
call, for each such package:

deconfigured's-prerm deconfigure \

in-favour package-being-installed version \

removing conflicting-package version

Error unwind:
5 See Maintainer script flowcharts for flowcharts illustrating the processes described here.

52 Chapter 6. Package maintainer scripts and installation procedure

Debian Policy Manual, Release 4.7.0.2

deconfigured's-postinst abort-deconfigure \

in-favour package-being-installed-but-failed version \

removing conflicting-package version

The deconfigured packages are marked as requiring configuration, so that if --install is used they will be
configured again if possible.

c. To prepare for removal of each conflicting package, call:

conflictor's-prerm remove \

in-favour package new-version

Error unwind:

conflictor's-postinst abort-remove \

in-favour package new-version

3. Run the preinst of the new package:

a. If the package is being upgraded, call:

new-preinst upgrade old-version new-version

If this fails, we call:

new-postrm abort-upgrade old-version new-version

i. If that works, then

old-postinst abort-upgrade new-version

is called. If this works, then the old version is in an “Installed” state, or else it is left in an “Unpacked”
state.

ii. If it fails, then the old version is left in an “Half-Installed” state.

b. Otherwise, if the package had some configuration files from a previous version installed (i.e., it is in the
“Config-Files” state):

new-preinst install old-version new-version

Error unwind:

new-postrm abort-install old-version new-version

If this fails, the package is left in a “Half-Installed” state, which requires a reinstall. If it works, the packages
is left in a “Config-Files” state.

c. Otherwise (i.e., the package was completely purged):

new-preinst install

Error unwind:

new-postrm abort-install

If the error-unwind fails, the package is in a “Half-Installed” phase, and requires a reinstall. If the error
unwind works, the package is in the “Not-Installed” state.

4. The new package’s files are unpacked, overwriting any that may be on the system already, for example any from
the old version of the same package or from another package. Backups of the old files are kept temporarily, and if
anything goes wrong the package management system will attempt to put them back as part of the error unwind.

It is an error for a package to contain files which are on the system in another package, unless Replaces is used
(see Overwriting files and replacing packages - Replaces).

6.6. Details of unpack phase of installation or upgrade 53

Debian Policy Manual, Release 4.7.0.2

It is a more serious error for a package to contain a plain file or other kind of non-directory where another
package has a directory (again, unless Replaces is used). This error can be overridden if desired using
--force-overwrite-dir, but this is not advisable.

Packages which overwrite each other’s files produce behavior which, though deterministic, is hard for the system
administrator to understand. It can easily lead to “missing” programs if, for example, a package is unpacked which
overwrites a file from another package, and is then removed again.6

A directory will never be replaced by a symbolic link to a directory or vice versa; instead, the existing state (symlink
or not) will be left alone and dpkg will follow the symlink if there is one.

5. If the package is being upgraded:

a. Call:

old-postrm upgrade new-version

b. If this fails, dpkg will attempt:

new-postrm failed-upgrade old-version new-version

If this works, installation continues. If not, Error unwind:

old-preinst abort-upgrade new-version

If this fails, the old version is left in a “Half-Installed” state. If it works, dpkg now calls:

new-postrm abort-upgrade old-version new-version

If this fails, the old version is left in a “Half-Installed” state. If it works, dpkg now calls:

old-postinst abort-upgrade new-version

If this fails, the old version is in an “Unpacked” state.

This is the point of no return. If dpkg gets this far, it won’t back off past this point if an error occurs. This will
leave the package in a fairly bad state, which will require a successful re-installation to clear up, but it’s when dpkg
starts doing things that are irreversible.

6. Any files which were in the old version of the package but not in the new are removed.

7. The new file list replaces the old.

8. The new maintainer scripts replace the old.

9. Any packages all of whose files have been overwritten during the installation, and which aren’t required for depen-
dencies, are considered to have been removed. For each such package

a. dpkg calls:

disappearer's-postrm disappear \

overwriter overwriter-version

b. The package’s maintainer scripts are removed.

c. It is noted in the status database as being in a sane state, namely “Not-Installed” (any conffiles it may have
are ignored, rather than being removed by dpkg). Note that disappearing packages do not have their prerm
called, because dpkg doesn’t know in advance that the package is going to vanish.

10. Any files in the package we’re unpacking that are also listed in the file lists of other packages are removed from
those lists. (This will lobotomize the file list of the “conflicting” package if there is one.)

11. The backup files made during installation, above, are deleted.

6 Part of the problem is due to what is arguably a bug in dpkg.

54 Chapter 6. Package maintainer scripts and installation procedure

Debian Policy Manual, Release 4.7.0.2

12. The new package’s status is now sane, and recorded as “Unpacked”.

Here is another point of no return: if the conflicting package’s removal fails we do not unwind the rest of the
installation. The conflicting package is left in a half-removed limbo.

13. If there was a conflicting package we go and do the removal actions (described below), starting with the removal
of the conflicting package’s files (any that are also in the package being unpacked have already been removed from
the conflicting package’s file list, and so do not get removed now).

6.7 Details of configuration

When we configure a package (this happens with dpkg --install and dpkg --configure), we first update any
conffiles and then call:

postinst configure most-recently-configured-version

No attempt is made to unwind after errors during configuration. If the configuration fails, the package is in a “Half-
Configured” state, and an error message is generated.

If there is no most recently configured version dpkg will pass a null argument.7

6.8 Details of removal and/or configuration purging

1. prerm remove

If prerm fails during replacement due to conflict

conflictor's-postinst abort-remove \

in-favour package new-version

Or else we call:

postinst abort-remove

If this fails, the package is in a “Half-Configured” state, or else it remains “Installed”.

2. The package’s files are removed (except conffiles).

3. postrm remove

If it fails, there’s no error unwind, and the package is in an “Half-Installed” state.

4. All the maintainer scripts except the postrm are removed.

If we aren’t purging the package we stop here. Note that packages which have no postrm and no conffiles are
automatically purged when removed, as there is no difference except for the dpkg status.

5. The conffiles and any backup files (~-files, #*# files, %-files, .dpkg-{old,new,tmp}, etc.) are removed.

6. postrm purge

If this fails, the package remains in a “Config-Files” state.

7. The package’s file list is removed.

7 Historical note: Truly ancient (pre-1997) versions of dpkg passed <unknown> (including the angle brackets) in this case. Even older ones did
not pass a second argument at all, under any circumstance. Note that upgrades using such an old dpkg version are unlikely to work for other reasons,
even if this old argument behavior is handled by your postinst script.

6.7. Details of configuration 55

Debian Policy Manual, Release 4.7.0.2

56 Chapter 6. Package maintainer scripts and installation procedure

CHAPTER

SEVEN

DECLARING RELATIONSHIPS BETWEEN PACKAGES

7.1 Syntax of relationship fields

These fields all have a uniform syntax. They are a list of package names separated by commas.

In the Depends, Recommends, Suggests, Pre-Depends, Build-Depends, Build-Depends-Indep and
Build-Depends-Arch control fields of the package, which declare dependencies on other packages, the package
names listed may also include lists of alternative package names, separated by vertical bar (pipe) symbols |. In such
a case, that part of the dependency can be satisfied by any one of the alternative packages. (Alternative dependencies
in Build-Depends, Build-Depends-Indep, and Build-Depends-Arch are interpreted specially by Debian auto-
builders. See Relationships between source and binary packages for more details.)

All of the fields may restrict their applicability to particular versions of each named package. This is done in parentheses
after each individual package name; the parentheses should contain a relation from the list below followed by a version
number, in the format described in Version.

The relations allowed are <<, <=, =, >= and >> for strictly earlier, earlier or equal, exactly equal, later or equal and strictly
later, respectively. The exception is the Provides field, for which only = is allowed.1

Whitespace may appear at any point in the version specification subject to the rules in Syntax of control files, and must
appear where it’s necessary to disambiguate; it is not otherwise significant. All of the relationship fields can only be folded
in source package template control files. For consistency and in case of future changes to dpkg it is recommended that a
single space be used after a version relationship and before a version number; it is also conventional to put a single space
after each comma, on either side of each vertical bar, and before each open parenthesis. When opening a continuation
line in a relationship field, it is conventional to do so after a comma and before the space following that comma.

For example, a list of dependencies might appear as:

Package: mutt

Version: 1.3.17-1

Depends: libc6 (>= 2.2.1), default-mta | mail-transport-agent

Relationships may be restricted to a certain set of architectures. This is indicated in brackets after each individual package
name and the optional version specification. The brackets enclose a non-empty list of Debian architecture names in the
format described in Architecture specification strings, separated by whitespace. Exclamation marks may be prepended to
each of the names. (It is not permitted for some names to be prepended with exclamation marks while others aren’t.)

For build relationship fields (Build-Depends, Build-Depends-Indep, Build-Depends-Arch,
Build-Conflicts, Build-Conflicts-Indep and Build-Conflicts-Arch), if the current Debian host
architecture is not in this list and there are no exclamation marks in the list, or it is in the list with a prepended
exclamation mark, the package name and the associated version specification are ignored completely for the purposes of
defining the relationships.

1 The relations < and > were previously allowed, but they were confusingly defined to mean earlier/later or equal rather than strictly earlier/later.
dpkg still supports them with a warning, but they are no longer allowed by Debian Policy.

57

Debian Policy Manual, Release 4.7.0.2

For example:

Source: glibc

Build-Depends-Indep: texinfo

Build-Depends: kernel-headers-2.2.10 [!hurd-i386],

hurd-dev [hurd-i386], gnumach-dev [hurd-i386]

requires kernel-headers-2.2.10 on all architectures other than hurd-i386 and requires hurd-dev and
gnumach-dev only on hurd-i386. Here is another example showing multiple architectures separated by spaces:

Build-Depends:

libluajit5.1-dev [i386 amd64 kfreebsd-i386 armel armhf powerpc mips],

liblua5.1-dev [hurd-i386 ia64 kfreebsd-amd64 s390x sparc],

For binary relationship fields and the Built-Using field, the architecture restriction syntax is only supported in the
source package template control file debian/control. When the corresponding binary package control file is generated,
the relationship will either be omitted or included without the architecture restriction based on the architecture of the
binary package. This means that architecture restrictions must not be used in binary relationship fields for architecture-
independent packages (Architecture: all).

For example:

Depends: foo [i386], bar [amd64]

becomes Depends: foo when the package is built on the i386 architecture, Depends: bar when the package is
built on the amd64 architecture, and omitted entirely in binary packages built on all other architectures.

If the architecture-restricted dependency is part of a set of alternatives using |, that alternative is ignored completely on
architectures that do not match the restriction. For example:

Build-Depends: foo [!i386] | bar [!amd64]

is equivalent to bar on the i386 architecture, to foo on the amd64 architecture, and to foo | bar on all other
architectures.

Relationships may also be restricted to a certain set of architectures using architecture wildcards in the format described
in Architecture wildcards. The syntax for declaring such restrictions is the same as declaring restrictions using a certain
set of architectures without architecture wildcards. For example:

Build-Depends: foo [linux-any], bar [any-i386], baz [!linux-any]

is equivalent to foo on architectures using the Linux kernel and any cpu, bar on architectures using any kernel and an
i386 cpu, and baz on any architecture using a kernel other than Linux.

Note that the binary package relationship fields such as Depends appear in one of the binary package stanzas of the
template control file, whereas the build-time relationships such as Build-Depends appear in the source package stanza
of the template control file (which is the first section).

7.2 Binary Dependencies - Depends, Recommends, Suggests, Enhances,
Pre-Depends

Packages can declare in their control file that they have certain relationships to other packages - for example, that they
cannot be installed at the same time as certain other packages, and/or that they depend on the presence of others.

This is done using the Depends, Pre-Depends, Recommends, Suggests, Enhances, Breaks and Conflicts con-
trol fields. Breaks is described in Packages which break other packages - Breaks, and Conflicts is described in

58 Chapter 7. Declaring relationships between packages

Debian Policy Manual, Release 4.7.0.2

Conflicting binary packages - Conflicts. The rest are described below.

These seven fields are used to declare a dependency relationship by one package on another. Except for Enhances
and Breaks, they appear in the depending (binary) package’s control file. (Enhances appears in the recommending
package’s control file, and Breaks appears in the version of depended-on package which causes the named package to
break).

A Depends field takes effect only when a package is to be configured. It does not prevent a package being on the system
in an unconfigured state while its dependencies are unsatisfied, and it is possible to replace a package whose dependencies
are satisfied and which is properly installed with a different version whose dependencies are not and cannot be satisfied;
when this is done the depending package will be left unconfigured (since attempts to configure it will give errors) and
will not function properly. If it is necessary, a Pre-Depends field can be used, which has a partial effect even when a
package is being unpacked, as explained in detail below. (The other three dependency fields, Recommends, Suggests
and Enhances, are only used by the various front-ends to dpkg such as apt-get, aptitude, and dselect.)

Since Depends only places requirements on the order in which packages are configured, packages in an installation run
are usually all unpacked first and all configured later.2

If there is a circular dependency among packages being installed or removed, installation or removal order honoring the
dependency order is impossible, requiring the dependency loop be broken at some point and the dependency requirements
violated for at least one package. Packages involved in circular dependencies may not be able to rely on their dependencies
being configured before they themselves are configured, depending on which side of the break of the circular dependency
loop they happen to be on. If one of the packages in the loop has no postinst script, then the cycle will be broken
at that package; this ensures that all postinst scripts are run with their dependencies properly configured if this is
possible. Otherwise the breaking point is arbitrary. Packages should therefore avoid circular dependencies where possible,
particularly if they have postinst scripts.

The meaning of the five dependency fields is as follows:

Depends

This declares an absolute dependency. A package will not be configured unless all of the packages listed in its
Depends field have been correctly configured (unless there is a circular dependency as described above).

The Depends field should be used if the depended-on package is required for the depending package to provide a
significant amount of functionality.

The Depends field should also be used if the postinst or prerm scripts require the depended-on package to
be unpacked or configured in order to run. In the case of postinst configure, the depended-on packages
will be unpacked and configured first. (If both packages are involved in a dependency loop, this might not work
as expected; see the explanation a few paragraphs back.) In the case of prerm or other postinst actions, the
package dependencies will normally be at least unpacked, but they may be only “Half-Installed” if a previous
upgrade of the dependency failed.

Finally, the Depends field should be used if the depended-on package is needed by the postrm script to fully clean
up after the package removal. There is no guarantee that package dependencies will be available when postrm is
run, but the depended-on package is more likely to be available if the package declares a dependency (particularly
in the case of postrm remove). The postrm script must gracefully skip actions that require a dependency if that
dependency isn’t available.

Recommends

This declares a strong, but not absolute, dependency.

The Recommends field should list packages that would be found together with this one in all but unusual installa-
tions.

2 This approach makes dependency resolution easier. If two packages A and B are being upgraded, the installed package A depends on exactly the
installed package B, and the new package A depends on exactly the new package B (a common situation when upgrading shared libraries and their
corresponding development packages), satisfying the dependencies at every stage of the upgrade would be impossible. This relaxed restriction means
that both new packages can be unpacked together and then configured in their dependency order.

7.2. Binary Dependencies - Depends, Recommends, Suggests, Enhances, Pre-Depends 59

Debian Policy Manual, Release 4.7.0.2

Suggests

This is used to declare that one package may be more useful with one or more others. Using this field tells the
packaging system and the user that the listed packages are related to this one and can perhaps enhance its usefulness,
but that installing this one without them is perfectly reasonable.

Enhances

This field is similar to Suggests but works in the opposite direction. It is used to declare that a package can enhance
the functionality of another package.

Pre-Depends

This field is like Depends, except that it also forces dpkg to complete installation of the packages named before
even starting the installation of the package which declares the pre-dependency, as follows:

When a package declaring a pre-dependency is about to be unpacked the pre-dependency can be satisfied if the
depended-on package is either fully configured, or even if the depended-on package(s) are only in the “Unpacked”
or the “Half-Configured” state, provided that they have been configured correctly at some point in the past (and
not removed or partially removed since). In this case, both the previously-configured and currently “Unpacked” or
“Half-Configured” versions must satisfy any version clause in the Pre-Depends field.

When the package declaring a pre-dependency is about to be configured, the pre-dependency will be treated as a
normal Depends. It will be considered satisfied only if the depended-on package has been correctly configured.
However, unlike with Depends, Pre-Depends does not permit circular dependencies to be broken. If a circular
dependency is encountered while attempting to honor Pre-Depends, the installation will be aborted.

Pre-Depends are also required if the preinst script depends on the named package. It is best to avoid this
situation if possible.

Pre-Depends should be used sparingly, preferably only by packages whose premature upgrade or installation
would hamper the ability of the system to continue with any upgrade that might be in progress.

You should not specify a Pre-Depends entry for a package before this has been discussed on the debian-devel
mailing list and a consensus about doing that has been reached. See Dependencies.

When selecting which level of dependency to use you should consider how important the depended-on package is to
the functionality of the one declaring the dependency. Some packages are composed of components of varying degrees
of importance. Such a package should list using Depends the package(s) which are required by the more important
components. The other components’ requirements may bementioned as Suggestions or Recommendations, as appropriate
to the components’ relative importance.

7.3 Packages which break other packages - Breaks

When one binary package declares that it breaks another, dpkg will refuse to allow the package which declares Breaks
to be unpacked unless the broken package is deconfigured first, and it will refuse to allow the broken package to be
reconfigured.

A package will not be regarded as causing breakage merely because its configuration files are still installed; it must be at
least “Half-Installed”.

A special exception is made for packages which declare that they break their own package name or a virtual package
which they provide (see below): this does not count as a real breakage.

Normally a Breaks entry will have an “earlier than” version clause; such a Breaks is introduced in the version of an
(implicit or explicit) dependency which violates an assumption or reveals a bug in earlier versions of the broken package,
or which takes over a file from earlier versions of the package named in Breaks. This use of Breaks will inform
higher-level package management tools that the broken package must be upgraded before the new one.

If the breaking package also overwrites some files from the older package, it should use Replaces to ensure this goes
smoothly. See Overwriting files and replacing packages - Replaces for a full discussion of taking over files from other
packages, including how to use Breaks in those cases.

60 Chapter 7. Declaring relationships between packages

Debian Policy Manual, Release 4.7.0.2

Many of the cases where Breaks should be used were previously handled with Conflicts because Breaks did not yet
exist. Many Conflicts fields should now be Breaks. See Conflicting binary packages - Conflicts for more information
about the differences.

7.4 Conflicting binary packages - Conflicts

When one binary package declares a conflict with another using a Conflicts field, dpkg will refuse to allow them to be
unpacked on the system at the same time. This is a stronger restriction than Breaks, which prevents the broken package
from being configured while the breaking package is in the “Unpacked” state but allows both packages to be unpacked at
the same time.

If one package is to be unpacked, the other must be removed first. If the package being unpacked is marked as replacing
(see Overwriting files and replacing packages - Replaces, but note that Breaks should normally be used in this case) the
one on the system, or the one on the system is marked as deselected, or both packages are marked Essential, then
dpkg will automatically remove the package which is causing the conflict. Otherwise, it will halt the installation of the
new package with an error. This mechanism is specifically designed to produce an error when the installed package is
Essential, but the new package is not.

A package will not cause a conflict merely because its configuration files are still installed; it must be at least “Half-
Installed”.

A special exception is made for packages which declare a conflict with their own package name, or with a virtual package
which they provide (see below): this does not prevent their installation, and allows a package to conflict with others
providing a replacement for it. You use this feature when you want the package in question to be the only package
providing some feature.

Normally, Breaks should be used instead of Conflicts since Conflicts imposes a stronger restriction on the ordering
of package installation or upgrade and can make it more difficult for the package manager to find a correct solution to an
upgrade or installation problem. Breaks should be used

• when moving a file from one package to another (see Overwriting files and replacing packages - Replaces),

• when splitting a package (a special case of the previous one), or

• when the breaking package exposes a bug in or interacts badly with particular versions of the broken package.

Conflicts should be used

• when two packages provide the same file and will continue to do so,

• in conjunction with Provides when only one package providing a given virtual facility can be unpacked at a time
(see Virtual packages - Provides),

• in other cases where one must prevent simultaneous installation of two packages for reasons that are ongoing (not
fixed in a later version of one of the packages) or that must prevent both packages from being unpacked at the same
time, not just configured.

Be aware that adding Conflicts is normally not the best solution when two packages provide the same files. Depending
on the reason for that conflict, using alternatives or renaming the files is often a better approach. See, for example,
Binaries.

Neither Breaks nor Conflicts should be used unless two packages cannot be installed at the same time or installing
them both causes one of them to be broken or unusable. Having similar functionality or performing the same tasks as
another package is not sufficient reason to declare Breaks or Conflicts with that package.

A Conflicts entry may have an “earlier than” version clause if the reason for the conflict is corrected in a later version
of one of the packages. However, normally the presence of an “earlier than” version clause is a sign that Breaks should
have been used instead. An “earlier than” version clause in Conflicts prevents dpkg from upgrading or installing the
package which declares such a conflict until the upgrade or removal of the conflicted-with package has been completed,
which is a strong restriction.

7.4. Conflicting binary packages - Conflicts 61

Debian Policy Manual, Release 4.7.0.2

7.5 Virtual packages - Provides

As well as the names of actual (“concrete”) packages, the package relationship fields Depends, Recom-

mends, Suggests, Enhances, Pre-Depends, Breaks, Conflicts, Build-Depends, Build-Depends-Indep,
Build-Depends-Arch, Build-Conflicts, Build-Conflicts-Indep and Build-Conflicts-Arch may men-
tion “virtual packages”.

A virtual package is one which appears in the Provides control field of another package. The effect is as if the package(s)
which provide a particular virtual package name had been listed by name everywhere the virtual package name appears.
(See also Virtual packages)

If there are both concrete and virtual packages of the same name, then the dependency may be satisfied (or the conflict
caused) by either the concrete package with the name in question or any other concrete package which provides the virtual
package with the name in question. This is so that, for example, supposing we have

Package: foo

Depends: bar

and someone else releases an enhanced version of the bar package they can say:

Package: bar-plus

Provides: bar

and the bar-plus package will now also satisfy the dependency for the foo package.

A Provides field may contain version numbers, and such a version number will be considered when considering a
dependency on or conflict with the virtual package name. For example, given the following packages:

Package: foo

Depends: bar (>= 1.0)

Package: bar

Version: 0.9

Package: bar-plus

Provides: bar (= 1.0)

the bar-plus package will satisfy the dependency for the foo package with the virtual package name, as above. If
the Provides field does not specify a version number, it will not satisfy versioned dependencies or violate versioned
Conflicts or Breaks. For example, given the following packages:

Package: foo

Depends: bar (>= 1.0)

Package: bar

Version: 0.9

Package: bar-plus

Provides: bar (= 1.0)

Package: bar-clone

Provides: bar

the bar-plus package will satisfy the dependency for the foo package, but the bar-clone package will not.

To specify which of a set of real packages should be the default to satisfy a particular dependency on a virtual package,
list the real package as an alternative before the virtual one.

62 Chapter 7. Declaring relationships between packages

Debian Policy Manual, Release 4.7.0.2

If the virtual package represents a facility that can only be provided by one real package at a time, such as the mail-
transport-agent virtual package that requires installation of a binary that would conflict with all other providers of that
virtual package (see Mail transport, delivery and user agents), all packages providing that virtual package should also
declare a conflict with it using Conflicts. This will ensure that at most one provider of that virtual package is unpacked
or installed at a time.

7.6 Overwriting files and replacing packages - Replaces

Packages can declare in their control file that they should overwrite files in certain other packages, or completely replace
other packages. The Replaces control field has these two distinct purposes.

7.6.1 Overwriting files in other packages

It is usually an error for a package to contain files which are on the system in another package. However, if the overwriting
package declares that it Replaces the one containing the file being overwritten, then dpkg will replace the file from the
old package with that from the new. The file will no longer be listed as “owned” by the old package and will be taken
over by the new package. Normally, Breaks should be used in conjunction with Replaces.3

For example, if a package foo is split into foo and foo-data starting at version 1.2-3, foo-data would have the fields

Replaces: foo (<< 1.2-3)

Breaks: foo (<< 1.2-3)

in its control file. The new version of the package foo would normally have the field

Depends: foo-data (>= 1.2-3)

(or possibly Recommends or even Suggests if the files moved into foo-data are not required for normal operation).

If a package is completely replaced in this way, so that dpkg does not know of any files it still contains, it is considered
to have “disappeared”. It will be marked as not wanted on the system (selected for removal) and “Not-Installed”. Any
conffiles details noted for the package will be ignored, as they will have been taken over by the overwriting package.
The package’s postrm script will be run with a special argument to allow the package to do any final cleanup required.
See Summary of ways maintainer scripts are called.4

For this usage of Replaces, virtual packages (see Virtual packages - Provides) are not considered when looking at a
Replaces field. The packages declared as being replaced must be mentioned by their real names.

This usage of Replaces only takes effect when both packages are at least partially on the system at once. It is not relevant
if the packages conflict unless the conflict has been overridden.

7.6.2 Replacing whole packages, forcing their removal

Second, Replaces allows the packaging system to resolve which package should be removed when there is a conflict
(see Conflicting binary packages - Conflicts). This usage only takes effect when the two packages do conflict, so that the
two usages of this field do not interfere with each other.

In this situation, the package declared as being replaced can be a virtual package, so for example, all mail transport agents
(MTAs) would have the following fields in their control files:

3 To see why Breaks is normally needed in addition to Replaces, consider the case of a file in the package foo being taken over by the package
foo-data. Replaces will allow foo-data to be installed and take over that file. However, without Breaks, nothing requires foo to be upgraded to a
newer version that knows it does not include that file and instead depends on foo-data. Nothing would prevent the new foo-data package from being
installed and then removed, removing the file that it took over from foo. After that operation, the package manager would think the system was in a
consistent state, but the foo package would be missing one of its files.

4 Replaces is a one way relationship. You have to install the replacing package after the replaced package.

7.6. Overwriting files and replacing packages - Replaces 63

Debian Policy Manual, Release 4.7.0.2

Provides: mail-transport-agent

Conflicts: mail-transport-agent

Replaces: mail-transport-agent

ensuring that only one MTA can be unpacked at any one time. See Virtual packages - Provides for more information
about this example.

7.7 Relationships between source and binary pack-
ages - Build-Depends, Build-Depends-Indep,
Build-Depends-Arch, Build-Conflicts, Build-Conflicts-Indep,
Build-Conflicts-Arch

Source packages that require certain binary packages to be installed or absent at the time of building the package may
declare relationships to those binary packages.

This is done using the Build-Depends, Build-Depends-Indep, Build-Depends-Arch, Build-Conflicts,
Build-Conflicts-Indep and Build-Conflicts-Arch control fields.

Build-dependencies on “build-essential” binary packages can be omitted. Please see Package relationships for more in-
formation.

The dependencies and conflicts they define must be satisfied (as defined earlier for binary packages) in order to invoke
the targets in debian/rules, as follows:

clean

Only the Build-Depends and Build-Conflicts fields must be satisfied when this target is invoked.

build-arch, and binary-arch
The Build-Depends, Build-Conflicts, Build-Depends-Arch, and Build-Conflicts-Arch fields
must be satisfied when these targets are invoked.

build-indep, and binary-indep
The Build-Depends, Build-Conflicts, Build-Depends-Indep, and Build-Conflicts-Indep fields
must be satisfied when these targets are invoked.

build and binary
The Build-Depends, Build-Conflicts, Build-Depends-Indep, Build-Conflicts-Indep,
Build-Depends-Arch, and Build-Conflicts-Arch fields must be satisfied when these targets are
invoked.

Alternative dependencies are allowed in the Build-Depends, Build-Depends-Indep, and Build-Depends-Arch
fields, but Debian’s autobuilders normally discard the dependencies after the first. This is done to give alternative de-
pendencies a consistent interpretation that reduces the risk of inconsistencies between repeated builds. If, for example,
the first-listed dependency would normally be available but is temporarily not installable, the autobuilder fails rather than
install a subsequent dependency that may significantly change the behavior of the package.

More specifically, Debian autobuilders perform the following transformation on alternative dependencies in the
Build-Depends, Build-Depends-Indep, and Build-Depends-Arch fields:

1. Discard any alternatives that are restricted to architectures that do not match the host architecture.

2. Discard any alternatives specifying different package names than the now-first alternative. (Alternatives specifying
the same package name are kept to permit relationships such as foo (<= x) | foo (>= y).)

For example, an autobuilder for the amd64 architecture would treat the following dependency:

64 Chapter 7. Declaring relationships between packages

Debian Policy Manual, Release 4.7.0.2

foo-special [armhf] | foo (<= 4) | foo (>= 4.2) | bar

as if it were:

foo (<= 4) | foo (>= 4.2)

The normal effect is to use only the first alternative that is valid on the relevant architecture and fail if that alternative is
not installable.

While this rule for build dependencies may limit the usefulness of alternatives, they can still be used to provide flexibility
when building the package outside of Debian’s autobuilders.

The autobuilders for the Debian backports and experimental suites do not perform this transformation and instead use
the same dependency resolution rules as normal package installations to choose which alternative dependency to install.

7.8 Additional source packages used to build the binary - Built-Using

Some binary packages incorporate parts of other packages when built but do not have to depend on those packages.
Examples include linking with static libraries or incorporating source code from another package during the build. In this
case, the source packages of those other packages are part of the complete source (the binary package is not reproducible
without them).

When the license of either the incorporated parts or the incorporating binary package requires that the full source code of
the incorporating binary package be made available, the Built-Using field must list the corresponding source package
for any affected binary package incorporated during the build,5 including an “exactly equal” (“=”) version relation on the
version that was used to build that version of the incorporating binary package.6

This causes the Debian archive to retain the versions of the source packages that were actually incorporated. In particular,
if the versions of the incorporated parts are updated but the incorporating binary package is not rebuilt, the older versions
of the incorporated parts will remain in the archive in order to satisfy the license.

A package using the source code from the gcc-4.6-source binary package built from the gcc-4.6 source package would
have this field in its control file:

Built-Using: gcc-4.6 (= 4.6.0-11)

A package including binaries from grub2 and loadlin would have this field in its control file:

Built-Using: grub2 (= 1.99-9), loadlin (= 1.6e-1)

This field should be used only when there are license or DFSG requirements to retain the referenced source packages.
It should not be added solely as a way to locate packages that need to be rebuilt against newer versions of their build
dependencies.

5 Build-Depends in the source package is not adequate since it (rightfully) does not document the exact version used in the build.
6 The archive software might reject packages that refer to non-existent sources.

7.8. Additional source packages used to build the binary - Built-Using 65

Debian Policy Manual, Release 4.7.0.2

66 Chapter 7. Declaring relationships between packages

CHAPTER

EIGHT

SHARED LIBRARIES

Packages containing shared libraries must be constructed with a little care to make sure that the shared library is always
available. This is especially important for packages whose shared libraries are vitally important, such as the C library
(currently libc6).

This section deals only with public shared libraries: shared libraries that are placed in directories searched by the dynamic
linker by default or which are intended to be linked against normally and possibly used by other, independent packages.
Shared libraries that are internal to a particular package or that are only loaded as dynamic modules are not covered by
this section and are not subject to its requirements.

A shared library is identified by the SONAME attribute stored in its dynamic section. When a binary is linked against a
shared library, the SONAME of the shared library is recorded in the binary’s NEEDED section so that the dynamic linker
knows that library must be loaded at runtime. The shared library file’s full name (which usually contains additional version
information not needed in the SONAME) is therefore normally not referenced directly. Instead, the shared library is loaded
by its SONAME, which exists on the file system as a symlink pointing to the full name of the shared library. This symlink
must be provided by the package. Run-time shared libraries describes how to do this.1

When linking a binary or another shared library against a shared library, the SONAME for that shared library is not yet
known. Instead, the shared library is found by looking for a file matching the library name with .so appended. This file
exists on the file system as a symlink pointing to the shared library.

Shared libraries are normally split into several binary packages. The SONAME symlink is installed by the runtime shared
library package, and the bare .so symlink is installed in the development package since it’s only used when linking
binaries or shared libraries. However, there are some exceptions for unusual shared libraries or for shared libraries that
are also loaded as dynamic modules by other programs.

This section is primarily concerned with how the separation of shared libraries into multiple packages should be done
and how dependencies on and between shared library binary packages are managed in Debian. Libraries should be read
in conjunction with this section and contains additional rules for the files contained in the shared library packages.

8.1 Run-time shared libraries

The run-time shared library must be placed in a package whose name changes whenever the SONAME of the shared library
changes. This allows several versions of the shared library to be installed at the same time, allowing installation of the
new version of the shared library without immediately breaking binaries that depend on the old version.2

1 This is a convention of shared library versioning, but not a requirement. Some libraries use the SONAME as the full library file name instead and
therefore do not need a symlink. Most, however, encode additional information about backwards-compatible revisions as a minor version number in
the file name. The SONAME itself only changes when binaries linked with the earlier version of the shared library may no longer work, but the filename
may change with each release of the library. See Run-time shared libraries for more information.

2 There are some exceptional situations in which co-installation of two versions of a shared library is not safe, and the new shared library package has
to conflict with the previous shared library package. This is never desirable, since it causes significant disruption during upgrades and potentially breaks
unpackaged third-party binaries, but is sometimes unavoidable. These situations are sufficiently rare that they usually warrant project-wide discussion,
and are complex enough that the rules for them cannot be codified in Debian Policy.

67

Debian Policy Manual, Release 4.7.0.2

Normally, the run-time shared library and its SONAME symlink should be placed in a package named librarynamesoversion,
where soversion is the version number in the SONAME of the shared library. Alternatively, if it would be confusing to di-
rectly append soversion to libraryname (if, for example, libraryname itself ends in a number), you should use libraryname-
soversion instead.3

To determine the soversion, look at the SONAME of the library, stored in the ELF SONAME attribute. It is usually of the
form name.so.major-version (for example, libz.so.1). The version part is the part which comes after .so., so
in that example it is 1. The soname may instead be of the form name-major-version.so, such as libdb-5.1.so,
in which case the name would be libdb and the version would be 5.1.

If you have several shared libraries built from the same source tree, you may lump them all together into a single shared
library package provided that all of their SONAMEs will always change together. Be aware that this is not normally the
case, and if the SONAMEs do not change together, upgrading such a merged shared library package will be unnecessarily
difficult because of file conflicts with the old version of the package. When in doubt, always split shared library packages
so that each binary package installs a single shared library.

Every time the shared library ABI changes in a way that could break binaries linked against older versions of the shared
library, the SONAME of the library and the corresponding name for the binary package containing the runtime shared
library should change. Normally, this means the SONAME should change any time an interface is removed from the shared
library or the signature of an interface (the number of parameters or the types of parameters that it takes, for example)
is changed. This practice is vital to allowing clean upgrades from older versions of the package and clean transitions
between the old ABI and new ABI without having to upgrade every affected package simultaneously.

The SONAME and binary package name need not, and indeed normally should not, change if new interfaces are added but
none are removed or changed, since this will not break binaries linked against the old shared library. Correct versioning of
dependencies on the newer shared library by binaries that use the new interfaces is handled via the symbols or shlibs
system (see Dependencies between the library and other packages).

The package should install the shared libraries under their normal names. For example, the libgdbm3 package should
install libgdbm.so.3.0.0 as /usr/lib/libgdbm.so.3.0.0. The files should not be renamed or re-linked by any
prerm or postrm scripts; dpkgwill take care of renaming things safely without affecting running programs, and attempts
to interfere with this are likely to lead to problems.

Shared libraries should not be installed executable, since the dynamic linker does not require this and trying to execute a
shared library usually results in a core dump.

The run-time library package should include the symbolic link for the SONAME that ldconfig would create for the
shared libraries. For example, the libgdbm3 package should include a symbolic link from /usr/lib/libgdbm.so.3

to libgdbm.so.3.0.0. This is needed so that the dynamic linker (for example ld.so or ld-linux.so.*) can find
the library between the time that dpkg installs it and the time that ldconfig is run in the postinst script.4

8.1.1 ldconfig

Any package installing shared libraries in one of the default library directories of the dynamic linker (which are currently
/usr/lib and /lib) or a directory that is listed in /etc/ld.so.conf5 must use ldconfig to update the shared
library system.

3 The following command, when run on a shared library, will output the name to be used for the Debian package containing that shared library:

objdump -p /path/to/libfoo-bar.so.1.2.3 \

| sed -n -e's/^[[:space:]]*SONAME[[:space:]]*//p' \

| LC_ALL=C sed -r -e's/([0-9])\.so\./\1-/; s/\.so(\.|$)//; y/_/-/; s/(.*)/\L&/'

4 The package management system requires the library to be placed before the symbolic link pointing to it in the .deb file. This is so that when
dpkg comes to install the symlink (overwriting the previous symlink pointing at an older version of the library), the new shared library is already in
place. In the past, this was achieved by creating the library in the temporary packaging directory before creating the symlink. Unfortunately, this was
not always effective, since the building of the tar file in the .deb depended on the behavior of the underlying file system. Some file systems (such
as reiserfs) reorder the files so that the order of creation is forgotten. Since version 1.7.0, dpkg reorders the files itself as necessary when building a
package. Thus it is no longer important to concern oneself with the order of file creation.

5 These are currently /usr/local/lib plus directories under /lib and /usr/lib matching the multiarch triplet for the system architecture.

68 Chapter 8. Shared libraries

Debian Policy Manual, Release 4.7.0.2

Any such package must have the line activate-noawait ldconfig in its triggers control file (i.e. DEBIAN/

triggers).

8.2 Shared library support files

If your package contains files whose names do not change with each change in the library shared object version, you must
not put them in the shared library package. Otherwise, several versions of the shared library cannot be installed at the
same time without filename clashes, making upgrades and transitions unnecessarily difficult.

It is recommended that supporting files and run-time support programs that do not need to be invoked manually by users,
but are nevertheless required for the package to function, be placed (if they are binary) in a subdirectory of /usr/lib,
preferably under /usr/lib/package-name. If the program or file is architecture independent, the recommendation is
for it to be placed in a subdirectory of /usr/share instead, preferably under /usr/share/package-name. Following
the package-name naming convention ensures that the file names change when the shared object version changes.

Run-time support programs that use the shared library but are not required for the library to function or files used by the
shared library that can be used by any version of the shared library package should instead be put in a separate package.
This package might typically be named libraryname-tools; note the absence of the soversion in the package name.

Files and support programs only useful when compiling software against the library should be included in the development
package for the library.6

8.3 Static libraries

The static library (libraryname.a) is usually provided in addition to the shared version. It is placed into the develop-
ment package (see below).

In some cases, it is acceptable for a library to be available in static form only; these cases include:

• libraries for languages whose shared library support is immature or unstable

• libraries whose interfaces are in flux or under development (commonly the case when the library’s major version
number is zero, or where the ABI breaks across patchlevels)

• libraries which are explicitly intended to be available only in static form by their upstream author(s)

8.4 Development files

If there are development files associated with a shared library, the source package needs to generate a binary de-
velopment package named libraryname-dev, or if you need to support multiple development versions at a time,
librarynameapiversion-dev. Installing the development package must result in installation of all the development files
necessary for compiling programs against that shared library.7

In case several development versions of a library exist, you may need to use dpkg’s Conflicts mechanism (see Conflicting
binary packages - Conflicts) to ensure that the user only installs one development version at a time (as different development
versions are likely to have the same header files in them, which would cause a filename clash if both were unpacked).

The development package should contain a symlink for the associated shared library without a version number. For
example, the libgdbm-dev package should include a symlink from /usr/lib/libgdbm.so to libgdbm.so.3.0.0.
This symlink is needed by the linker (ld) when compiling packages, as it will only look for libgdbm.sowhen compiling
dynamically.

6 For example, a package-name-config script or pkg-config configuration files.
7 This wording allows the development files to be split into several packages, such as a separate architecture-independent libraryname-headers,

provided that the development package depends on all the required additional packages.

8.2. Shared library support files 69

Debian Policy Manual, Release 4.7.0.2

If the package provides Ada Library Information (*.ali) files for use with GNAT, these files must be installed read-only
(mode 0444) so that GNAT will not attempt to recompile them. This overrides the normal file mode requirements given
in Permissions and owners.

8.5 Dependencies between the packages of the same library

Typically the development version should have an exact version dependency on the runtime library, to make sure that
compilation and linking happens correctly. The ${binary:Version} substitution variable can be useful for this pur-
pose.8

8.6 Dependencies between the library and other packages

If a package contains a binary or library which links to a shared library, we must ensure that, when the package is installed
on the system, all of the libraries needed are also installed. These dependencies must be added to the binary package when
it is built, since they may change based on which version of a shared library the binary or library was linked with even
if there are no changes to the source of the binary (for example, symbol versions change, macros become functions or
vice versa, or the binary package may determine at compile-time whether new library interfaces are available and can be
called). To allow these dependencies to be constructed, shared libraries must provide either a symbols file or a shlibs
file. These provide information on the package dependencies required to ensure the presence of interfaces provided by
this library. Any package with binaries or libraries linking to a shared library must use these files to determine the required
dependencies when it is built. Other packages which use a shared library (for example using dlopen()) should compute
appropriate dependencies using these files at build time as well.

The twomechanisms differ in the degree of detail that they provide. A symbols file documents, for each symbol exported
by a library, the minimal version of the package any binary using this symbol will need. This is typically the version of
the package in which the symbol was introduced. This information permits detailed analysis of the symbols used by
a particular package and construction of an accurate dependency, but it requires the package maintainer to track more
information about the shared library.

A shlibs file, in contrast, only documents the last time the library ABI changed in any way. It only provides information
about the library as a whole, not individual symbols. When a package is built using a shared library with only a shlibs
file, the generated dependency will require a version of the shared library equal to or newer than the version of the last
ABI change. This generates unnecessarily restrictive dependencies compared to symbols files if none of the symbols
used by the package have changed. This, in turn, could make upgrades needlessly complex and unnecessarily restrict use
of the package on systems with older versions of the shared libraries.

shlibs files also only support a limited range of library SONAMEs, making it difficult to use shlibs files in some
unusual corner cases.9

symbols files are therefore recommended for most shared library packages since they provide more accurate depen-
dencies. For most C libraries, the additional detail required by symbols files is not too difficult to maintain. However,
maintaining exhaustive symbols information for a C++ library can be quite onerous, so shlibs files may be more ap-
propriate for most C++ libraries. Libraries with a corresponding udeb must also provide a shlibs file, since the udeb
infrastructure does not use symbols files.

8.6.1 Generating dependencies on shared libraries

When a package that contains any shared libraries or compiled binaries is built, it must run dpkg-shlibdeps on each
shared library and compiled binary to determine the libraries used and hence the dependencies needed by the package.10

To do this, put a call to dpkg-shlibdeps into your debian/rules file in the source package. List all of the compiled

8 Previously, ${Source-Version} was used, but its name was confusing and it has been deprecated since dpkg 1.13.19.
9 A shlibs file represents an SONAME as a library name and version number, such as libfoo VERSION, instead of recording the actual SON-

AME. If the SONAME doesn’t match one of the two expected formats (libfoo-VERSION.so or libfoo.so.VERSION), it cannot be represented.
10 dpkg-shlibdeps will use a program like objdump or readelf to find the libraries and the symbols in those libraries directly needed by the

binaries or shared libraries in the package.

70 Chapter 8. Shared libraries

Debian Policy Manual, Release 4.7.0.2

binaries, libraries, or loadable modules in your package.11 dpkg-shlibdeps will use the symbols or shlibs files
installed by the shared libraries to generate dependency information. The package must then provide a substitution
variable into which the discovered dependency information can be placed.

If you are creating a udeb for use in the Debian Installer, you will need to specify that dpkg-shlibdeps should use
the dependency line of type udeb by adding the -tudeb option.12 If there is no dependency line of type udeb in the
shlibs file, dpkg-shlibdeps will fall back to the regular dependency line.

dpkg-shlibdeps puts the dependency information into the debian/substvars file by default, which is then used by
dpkg-gencontrol. You will need to place a ${shlibs:Depends} variable in the Depends field in the control file of
every binary package built by this source package that contains compiled binaries, libraries, or loadable modules. If you
have multiple binary packages, you will need to call dpkg-shlibdeps on each one which contains compiled libraries
or binaries. For example, you could use the -T option to the dpkg utilities to specify a different substvars file for each
binary package.13

For more details on dpkg-shlibdeps, see its manual page.

We say that a binary foo directly uses a library libbar if it is explicitly linked with that library (that is, the library is
listed in the ELF NEEDED attribute, caused by adding -lbar to the link line when the binary is created). Other libraries
that are needed by libbar are linked indirectly to foo, and the dynamic linker will load them automatically when it
loads libbar. A package should depend on the libraries it directly uses, but not the libraries it only uses indirectly. The
dependencies for the libraries used directly will automatically pull in the indirectly-used libraries. dpkg-shlibdeps
will handle this logic automatically, but package maintainers need to be aware of this distinction between directly and
indirectly using a library if they have to override its results for some reason.14

8.6.2 Shared library ABI changes

Maintaining a shared library package using either symbols or shlibs files requires being aware of the exposed ABI of
the shared library and any changes to it. Both symbols and shlibs files record every change to the ABI of the shared
library; symbols files do so per public symbol, whereas shlibs files record only the last change for the entire library.

There are two types of ABI changes: ones that are backward-compatible and ones that are not. An ABI change is
backward-compatible if any reasonable program or library that was linked with the previous version of the shared library
will still work correctly with the new version of the shared library.15 Adding new symbols to the shared library is a
backward-compatible change. Removing symbols from the shared library is not. Changing the behavior of a symbol may
or may not be backward-compatible depending on the change; for example, changing a function to accept a new enum
constant not previously used by the library is generally backward-compatible, but changing the members of a struct that
is passed into library functions is generally not unless the library takes special precautions to accept old versions of the
data structure.

ABI changes that are not backward-compatible normally require changing the SONAME of the library and therefore the
shared library package name, which forces rebuilding all packages using that shared library to update their dependencies
and allow them to use the new version of the shared library. For more information, see Run-time shared libraries. The
remainder of this section will deal with backward-compatible changes.

11 The easiest way to call dpkg-shlibdeps correctly is to use a package helper framework such as debhelper. If you are using debhelper, the
dh_shlibdeps program will do this work for you. It will also correctly handle multi-binary packages.

12 dh_shlibdeps from the debhelper suite will automatically add this option if it knows it is processing a udeb.
13 Again, dh_shlibdeps and dh_gencontrol will handle everything except the addition of the variable to the control file for you if you’re using

debhelper, including generating separate substvars files for each binary package and calling dpkg-gencontrol with the appropriate flags.
14 A good example of where this helps is the following: We could update libimlib with a new version that supports a new revision of a graphics

format called dgf (but retaining the same major version number) and depends on a new library package libdgf4 instead of the older libdgf3. If we used
ldd to add dependencies for every library directly or indirectly linked with a binary, every package that uses libimlib would need to be recompiled
so it would also depend on libdgf4 in order to retire the older libdgf3 package. Since dependencies are only added based on ELF NEEDED attribute,
packages using libimlib can rely on libimlib itself having the dependency on an appropriate version of libdgf and do not need rebuilding.

15 An example of an “unreasonable” program is one that uses library interfaces that are documented as internal and unsupported. If the only programs
or libraries affected by a change are “unreasonable” ones, other techniques, such as declaring Breaks relationships with affected packages or treating
their usage of the library as bugs in those packages, may be appropriate instead of changing the SONAME. However, the default approach is to change
the SONAME for any change to the ABI that could break a program.

8.6. Dependencies between the library and other packages 71

Debian Policy Manual, Release 4.7.0.2

Backward-compatible changes require either updating or recording the minimal-version for that symbol in symbols files
or updating the version in the dependencies in shlibs files. For more information on how to do this in the two formats,
see The symbols File Format and The shlibs File Format. Below are general rules that apply to both files.

The easy case is when a public symbol is added. Simply add the version at which the symbol was introduced (for symbols
files) or update the dependency version (for shlibs) files. But special care should be taken to update dependency versions
when the behavior of a public symbol changes. This is easy to neglect, since there is no automated method of determining
such changes, but failing to update versions in this case could result in binary packages with too-weak dependencies that
will fail at runtime, possibly in ways that can cause security vulnerabilities. If the package maintainer believes that a
symbol behavior change could have occurred but isn’t sure, it’s safer to update the version rather than leave it unmodified.
This may result in unnecessarily strict dependencies, but it ensures that packages whose dependencies are satisfied will
work properly.

A common example of when a change to the dependency version is required is a function that takes an enum or struct
argument that controls what the function does. For example:

enum library_op { OP_FOO, OP_BAR };

int library_do_operation(enum library_op);

If a new operation, OP_BAZ, is added, the minimal-version of library_do_operation (for symbols files) or the
version in the dependency for the shared library (for shlibs files) must be increased to the version at which OP_BAZ
was introduced. Otherwise, a binary built against the new version of the library (having detected at compile-time that
the library supports OP_BAZ) may be installed with a shared library that doesn’t support OP_BAZ and will fail at runtime
when it tries to pass OP_BAZ into this function.

Dependency versions in either symbols or shlibs files normally should not contain the Debian revision of the package,
since the library behavior is normally fixed for a particular upstream version and any Debian packaging of that upstream
version will have the same behavior. In the rare case that the library behavior was changed in a particular Debian revision,
appending ~ to the end of the version that includes the Debian revision is recommended, since this allows backports of
the shared library package using the normal backport versioning convention to satisfy the dependency.

8.6.3 The symbols system

In the following sections, we will first describe where the various symbols files are to be found, then the symbols file
format, and finally how to create symbols files if your package contains a shared library.

8.6.3.1 The symbols files present on the system

symbols files for a shared library are normally provided by the shared library package as a control file, but there are
several override paths that are checked first in case that information is wrong or missing. The following list gives them in
the order in which they are read by dpkg-shlibdeps. The first one that contains the required information is used.

debian/*/DEBIAN/symbols

During the package build, if the package itself contains shared libraries with symbols files, they will be generated
in these staging directories by dpkg-gensymbols (see Providing a symbols file). symbols files found in the build
tree take precedence over symbols files from other binary packages.

These files must exist before dpkg-shlibdeps is run or the dependencies of binaries and libraries from a
source package on other libraries from that same source package will not be correct. In practice, this means
that dpkg-gensymbols must be run before dpkg-shlibdeps during the package build.16

16 An example may clarify. Suppose the source package foo generates two binary packages, libfoo2 and foo-runtime. When building the
binary packages, the contents of the packages are staged in the directories debian/libfoo2 and debian/foo-runtime respectively. (debian/
tmp could be used instead of one of these.) Since libfoo2 provides the libfoo shared library, it will contain a symbols file, which will be installed in
debian/libfoo2/DEBIAN/symbols, eventually to be included as a control file in that package. When dpkg-shlibdeps is run on the executable
debian/foo-runtime/usr/bin/foo-prog, it will examine the debian/libfoo2/DEBIAN/symbols file to determine whether foo-prog’s
library dependencies are satisfied by any of the libraries provided by libfoo2. Since those binaries were linked against the just-built shared library as
part of the build process, the symbols file for the newly-built libfoo2 must take precedence over a symbols file for any other libfoo2 package
already installed on the system.

72 Chapter 8. Shared libraries

Debian Policy Manual, Release 4.7.0.2

/etc/dpkg/symbols/package.symbols.arch and /etc/dpkg/symbols/package.symbols
Per-system overrides of shared library dependencies. These files normally do not exist. They are maintained by
the local system administrator and must not be created by any Debian package.

symbols control files for packages installed on the system
The symbols control files for all the packages currently installed on the system are searched last. This will be
the most common source of shared library dependency information. These files can be read with dpkg-query
--control-show package symbols.

Be aware that if a debian/shlibs.local exists in the source package, it will override any symbols files. This is the
only case where a shlibs is used despite symbols files being present. See The shlibs files present on the system and The
shlibs system for more information.

8.6.3.2 The symbols File Format

The following documents the format of the symbols control file as included in binary packages. These files are built
from template symbols files in the source package by dpkg-gensymbols. The template files support a richer syntax
that allows dpkg-gensymbols to do some of the tedious work involved in maintaining symbols files, such as handling
C++ symbols or optional symbols that may not exist on particular architectures. When writing symbols files for a shared
library package, refer to dpkg-gensymbols(1) for the richer syntax.

A symbols may contain one or more entries, one for each shared library contained in the package corresponding to that
symbols. Each entry has the following format:

library-soname main-dependency-template

[| alternative-dependency-template]

[...]

[* field-name: field-value]

[...]

symbol minimal-version[id-of-dependency-template]

To explain this format, we’ll use the zlib1g package as an example, which (at the time of writing) installs the shared
library /usr/lib/libz.so.1.2.3.4. Mandatory lines will be described first, followed by optional lines.

library-soname must contain exactly the value of the ELF SONAME attribute of the shared library. In our example,
this is libz.so.1.17

main-dependency-template has the same syntax as a dependency field in a binary package control file, except that
the string #MINVER# is replaced by a version restriction like (>= version) or by nothing if an unversioned dependency
is deemed sufficient. The version restriction will be based on which symbols from the shared library are referenced and the
version at which they were introduced (see below). In nearly all cases, main-dependency-template will be package
#MINVER#, where package is the name of the binary package containing the shared library. This adds a simple, possibly-
versioned dependency on the shared library package. In some rare cases, such as when multiple packages provide the
same shared library ABI, the dependency template may need to be more complex.

In our example, the first line of the zlib1g symbols file would be:

libz.so.1 zlib1g #MINVER#

Each public symbol exported by the shared library must have a corresponding symbol line, indented by one space. symbol
is the exported symbol (which, for C++, means the mangled symbol) followed by @ and the symbol version, or the string
Base if there is no symbol version. minimal-version is the most recent version of the shared library that changed the
behavior of that symbol, whether by adding it, changing its function signature (the parameters, their types, or the return

17 This can be determined by using the command

readelf -d /usr/lib/libz.so.1.2.3.4 | grep SONAME

8.6. Dependencies between the library and other packages 73

Debian Policy Manual, Release 4.7.0.2

type), or changing its behavior in a way that is visible to a caller. id-of-dependency-template is an optional field
that references an alternative-dependency-template; see below for a full description.

For example, libz.so.1 contains the symbols compress and compressBound. compress has no symbol version
and last changed its behavior in upstream version 1:1.1.4. compressBound has the symbol version ZLIB_1.2.0,
was introduced in upstream version 1:1.2.0, and has not changed its behavior. Its symbols file therefore contains the
lines:

compress@Base 1:1.1.4

compressBound@ZLIB_1.2.0 1:1.2.0

Packages using only compress would then get a dependency on zlib1g (>= 1:1.1.4), but packages using com-
pressBound would get a dependency on zlib1g (>= 1:1.2.0).

One or more alternative-dependency-template lines may be provided. These are used in cases where some
symbols in the shared library should use one dependency template while others should use a different template. The
alternative dependency templates are used only if a symbol line contains the id-of-dependency-template field.
The first alternative dependency template is numbered 1, the second 2, and so forth.18

Finally, the entry for the library may contain one or more metadata fields. Currently, the only supported field-name
is Build-Depends-Package, whose value lists the library development package on which packages using this shared
library declare a build dependency. If this field is present, dpkg-shlibdeps uses it to ensure that the resulting binary
package dependency on the shared library is at least as strict as the source package dependency on the shared library
development package.19 For our example, the zlib1g symbols file would contain:

* Build-Depends-Package: zlib1g-dev

Also see deb-symbols(5).

8.6.3.3 Providing a symbols file

If your package provides a shared library, you should arrange to include a symbols control file following the format
described above in that package. You must include either a symbols control file or a shlibs control file.

Normally, this is done by creating a symbols in the source package named debian/package.symbols or debian/
symbols, possibly with .arch appended if the symbols information varies by architecture. This filemay use the extended
syntax documented in dpkg-gensymbols(1). Then, call dpkg-gensymbols as part of the package build process. It
will create symbols files in the package staging area based on the binaries and libraries in the package staging area and
the symbols files in the source package.20

Packages that provide symbols files must keep them up-to-date to ensure correct dependencies in packages that use the
shared libraries. This means updating the symbols file whenever a new public symbol is added, changing the minimal-
version field whenever a symbol changes behavior or signature in a backward-compatible way (see Shared library ABI
changes), and changing the library-soname andmain-dependency-template, and probably all of theminimal-version fields,

18 An example of where this may be needed is with a library that implements the libGL interface. All GL implementations provide the same set of
base interfaces, and then may provide some additional interfaces only used by programs that require that specific GL implementation. So, for example,
libgl1-mesa-glx may use the following symbols file:

libGL.so.1 libgl1

| libgl1-mesa-glx #MINVER#

publicGlSymbol@Base 6.3-1 [...]

implementationSpecificSymbol@Base 6.5.2-7 1

[...]

Binaries or shared libraries using only publicGlSymbol would depend only on libgl1 (which may be provided by multiple packages), but ones
using implementationSpecificSymbol would get a dependency on libgl1-mesa-glx (>= 6.5.2-7).

19 This field should normally not be necessary, since if the behavior of any symbol has changed, the corresponding symbol minimal-version should
have been increased. But including it makes the symbols system more robust by tightening the dependency in cases where the package using the
shared library specifically requires at least a particular version of the shared library development package for some reason.

20 If you are using debhelper, dh_makeshlibs will take care of calling either dpkg-gensymbols or generating a shlibs file as appropriate.

74 Chapter 8. Shared libraries

Debian Policy Manual, Release 4.7.0.2

when the library changes SONAME. Removing a public symbol from the symbols file because it’s no longer provided by
the library normally requires changing the SONAME of the library. See Run-time shared libraries for more information on
SONAMEs.

8.6.4 The shlibs system

The shlibs system is a simpler alternative to the symbols system for declaring dependencies for shared libraries. It
may be more appropriate for C++ libraries and other cases where tracking individual symbols is too difficult. It predated
the symbols system and is therefore frequently seen in older packages. It is also required for udebs, which do not support
symbols.

In the following sections, we will first describe where the various shlibs files are to be found, then how to use
dpkg-shlibdeps, and finally the shlibs file format and how to create them.

8.6.4.1 The shlibs files present on the system

There are several places where shlibs files are found. The following list gives them in the order in which they are read
by dpkg-shlibdeps. (The first one which gives the required information is used.)

debian/shlibs.local

This lists overrides for this package. This file should normally not be used, butmay be needed temporarily in unusual
situations to work around bugs in other packages, or in unusual cases where the normally declared dependency
information in the installed shlibs file for a library cannot be used. This file overrides information obtained from
any other source.

/etc/dpkg/shlibs.override

This lists global overrides. This list is normally empty. It is maintained by the local system administrator.

DEBIAN/shlibs files in the “build directory”
These files are generated as part of the package build process and staged for inclusion as control files in the binary
packages being built. They provide details of any shared libraries included in the same package.

shlibs control files for packages installed on the system
The shlibs control files for all the packages currently installed on the system. These files can be read using
dpkg-query --control-show package shlibs.

/etc/dpkg/shlibs.default

This file lists any shared libraries whose packages have failed to provide correct shlibs files. It was used when
the shlibs setup was first introduced, but it is now normally empty. It is maintained by the dpkg maintainer.

If a symbols file for a shared library package is available, dpkg-shlibdepswill always use it in preference to a shlibs,
with the exception of debian/shlibs.local. The latter overrides any other shlibs or symbols files.

8.6.4.2 The shlibs File Format

Each shlibs file has the same format. Lines beginning with # are considered to be comments and are ignored. Each
line is of the form:

[type:]library-name soname-version dependencies ...

We will explain this by reference to the example of the zlib1g package, which (at the time of writing) installs the shared
library /usr/lib/libz.so.1.2.3.4.

type is an optional element that indicates the type of package for which the line is valid. The only type currently in use
is udeb. The colon and space after the type are required.

library-name is the name of the shared library, in this case libz. (This must match the name part of the soname, see
below.)

8.6. Dependencies between the library and other packages 75

Debian Policy Manual, Release 4.7.0.2

soname-version is the version part of the ELF SONAME attribute of the library, determined the same way that the
soversion component of the recommended shared library package name is determined. See Run-time shared libraries for
the details.

dependencies has the same syntax as a dependency field in a binary package control file. It should give details of which
packages are required to satisfy a binary built against the version of the library contained in the package. See Syntax of
relationship fields for details on the syntax, and Shared library ABI changes for details on how to maintain the dependency
version constraint.

In our example, if the last change to the zlib1g package that could change behavior for a client of that library was in
version 1:1.2.3.3.dfsg-1, then the shlibs entry for this library could say:

libz 1 zlib1g (>= 1:1.2.3.3.dfsg)

This version restriction must be new enough that any binary built against the current version of the library will work with
any version of the shared library that satisfies that dependency.

As zlib1g also provides a udeb containing the shared library, there would also be a second line:

udeb: libz 1 zlib1g-udeb (>= 1:1.2.3.3.dfsg)

8.6.4.3 Providing a shlibs file

To provide a shlibs file for a shared library binary package, create a shlibs file following the format described above
and place it in the DEBIAN directory for that package during the build. It will then be included as a control file for that
package.21

Since dpkg-shlibdeps reads the DEBIAN/shlibs files in all of the binary packages being built from this source
package, all of the DEBIAN/shlibs files should be installed before dpkg-shlibdeps is called on any of the binary
packages.

21 This is what dh_makeshlibs in the debhelper suite does. If your package also has a udeb that provides a shared library, dh_makeshlibs can
automatically generate the udeb: lines if you specify the name of the udeb with the --add-udeb option.

76 Chapter 8. Shared libraries

CHAPTER

NINE

THE OPERATING SYSTEM

9.1 File system hierarchy

9.1.1 File System Structure

The location of all files and directories must comply with the Filesystem Hierarchy Standard (FHS), version 3.0, with the
exceptions noted below, and except where doing so would violate other terms of Debian Policy. The following exceptions
to the FHS apply:

1. The FHS requirement that architecture-independent application-specific static files be located in /usr/share is
relaxed to a suggestion. In particular, a subdirectory of /usr/lib may be used by a package (or a collection
of packages) to hold a mixture of architecture-independent and architecture-dependent files. However, when a
directory is entirely composed of architecture-independent files, it should be located in /usr/share.

2. The optional rules related to user specific configuration files for applications are stored in the user’s home directory
are relaxed. It is recommended that such files start with the ‘.’ character (a “dot file”), and if an application needs
to create more than one dot file then the preferred placement is in a subdirectory with a name starting with a ‘.’
character, (a “dot directory”). In this case it is recommended the configuration files not start with the ‘.’ character.

3. Only the dynamic linker and libc are allowed to install files in /lib64.

4. The requirement for object files, internal binaries, and libraries, including libc.so.*, to be located directly under
/lib{,32} and /usr/lib{,32} is amended, permitting files to instead be installed to /lib/triplet and /
usr/lib/triplet, where triplet is the value returned by dpkg-architecture -qDEB_HOST_MULTIARCH

for the architecture of the package. Packages must not install files to any triplet path other than the one matching
the architecture of that package; for instance, an Architecture: amd64 package containing 32-bit x86 libraries
must not install these libraries to /usr/lib/i386-linux-gnu.1

Packages for 64-bit architectures must not install files in /usr/lib64 or in a subdirectory of it.

The requirement for C and C++ headers files to be accessible through the search path /usr/include/ is amended,
permitting files to be accessible through the search path /usr/include/triplet where triplet is as above.2

Applications may also use a single subdirectory under /usr/lib/triplet.

The execution time linker/loader, ld*, must still be made available in the existing location under /lib or /lib64 since
this is part of the ELF ABI for the architecture.

5. The requirement that /usr/local/share/man be “synonymous” with /usr/local/man is relaxed to a rec-
ommendation

6. The requirement that window managers with a single configuration file call it system.*wmrc is removed, as is the
restriction that the window manager subdirectory be named identically to the window manager name itself.

1 This is necessary in order to reserve the directories for use in cross-installation of library packages from other architectures, as part of multiarch.
2 This is necessary for architecture-dependent headers file to coexist in a multiarch setup.

77

Debian Policy Manual, Release 4.7.0.2

7. The requirement that boot manager configuration files live in /etc, or at least are symlinked there, is relaxed to a
recommendation.

8. /var/run is required to be a symbolic link to /run, and /var/lock is required to be a symbolic link to /run/
lock.

9. The /var/www directory is additionally allowed.

10. The requirement for /usr/local/share/color to exist if /usr/share/color exists is relaxed to a recom-
mendation.

11. The requirement for /usr/local/libqual to exist if /libqual or /usr/libqual exists (where libqual is
a variant of lib such as lib32 or lib64) is removed.

12. On GNU/Hurd systems, the following additional directories are allowed in the root filesystem: /hurd and /

servers.3

13. As an exception to the requirement for there to be no subdirectories in /usr/bin, the mhmail-handling suite may
create /usr/bin/mh/, as was allowed in FHS version 2.3. Other subdirectories are not allowed.

The version of this document referred here can be found in the debian-policy package or on FHS (Debian copy)
alongside this manual (or, if you have the debian-policy installed, you can try FHS (local copy)). The latest version,
which may be a more recent version, may be found on FHS (upstream). Specific questions about following the standard
may be asked on the debian-devel mailing list, or referred to the FHS mailing list (see the FHS web site for more
information).

9.1.2 Site-specific programs

As mandated by the FHS, packages must not place any files in /usr/local, either by putting them in the file system
archive to be unpacked by dpkg or by manipulating them in their maintainer scripts.

However, the package may create empty directories below /usr/local so that the system administrator knows where
to place site-specific files. These are not directories in /usr/local, but are children of directories in /usr/local.
These directories (/usr/local/*/dir/) should be removed on package removal if they are empty.

Note that this applies only to directories below /usr/local, not in /usr/local. Packages must not create sub-
directories in the directory /usr/local itself, except those listed in FHS, section 4.9. However, you may create
directories below them as you wish. You must not remove any of the directories listed in 4.9, even if you created
them.

If /etc/staff-group-for-usr-local does not exist, /usr/local and all subdirectories created by packages
should have permissions 0755 and be owned by root:root. If /etc/staff-group-for-usr-local exists, /
usr/local and subdirectories should have permissions 2775 (group-writable and set-group-id) and be owned by
root:staff.

Since /usr/local can be mounted read-only from a remote server, /usr/local/*/dir/ directories must be created
and removed by the postinst and prerm maintainer scripts and not be included in the .deb archive. These scripts
must not fail if either of these operations fail.

For example, the emacsen-common package could contain something like

if [! -e /usr/local/share/emacs]; then

if mkdir /usr/local/share/emacs 2>/dev/null; then

if test -e /etc/staff-group-for-usr-local ; then

if chown root:staff /usr/local/share/emacs; then

chmod 2775 /usr/local/share/emacs || true

fi

elif chown root:root /usr/local/share/emacs; then

(continues on next page)

3 These directories are used to store translators and as a set of standard names for mount points, respectively.

78 Chapter 9. The Operating System

https://www.debian.org/doc/packaging-manuals/fhs/
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml

Debian Policy Manual, Release 4.7.0.2

(continued from previous page)

chmod 0755 /usr/local/share/emacs || true

fi

fi

fi

in its postinst script, and

rmdir /usr/local/share/emacs/site-lisp 2>/dev/null || true

rmdir /usr/local/share/emacs 2>/dev/null || true

in the prerm script. (Note that this form is used to ensure that if the script is interrupted, the directory /usr/local/
share/emacs will still be removed.)

If you do create a directory in /usr/local for local additions to a package, you should ensure that settings in /usr/
local take precedence over the equivalents in /usr.

However, because /usr/local and its contents are for exclusive use of the local administrator, a package must not rely
on the presence or absence of files or directories in /usr/local for normal operation.

9.1.3 The system-wide mail directory

The system-wide mail directory is /var/mail. This directory is part of the base system and should not be owned by any
particular mail agents. The use of the old location /var/spool/mail is deprecated, even though the spool may still be
physically located there.

9.1.4 /run and /run/lock

The directory /run is cleared at boot, normally by being a mount point for a temporary file system. Packages therefore
must not assume that any files or directories under /run other than /run/lock exist unless the package has arranged to
create those files or directories since the last reboot. Normally, this is done by the package via an init script. SeeWriting
the scripts for more information.

Packages must not include files or directories under /run, or under the older /var/run and /var/lock paths. The
latter paths will normally be symlinks or other redirections to /run for backwards compatibility.

9.2 Users and groups

9.2.1 Introduction

The Debian system can be configured to use either plain or shadow passwords.

Some user ids (UIDs) and group ids (GIDs) are reserved globally for use by certain packages. Because some packages
need to include files which are owned by these users or groups, or need the ids compiled into binaries, these ids must be
used on any Debian system only for the purpose for which they are allocated. This is a serious restriction, and we should
avoid getting in the way of local administration policies. In particular, many sites allocate users and/or local system groups
starting at 100.

Apart from this we should have dynamically allocated ids, which should by default be arranged in some sensible order,
but the behavior should be configurable. When maintainers choose a new hardcoded or dynamically generated username
for packages to use, they should start this username with an underscore. This minimizes collisions with locally created
user accounts.

Packages other than base-passwdmust not modify /etc/passwd, /etc/shadow, /etc/group or /etc/gshadow.

9.2. Users and groups 79

Debian Policy Manual, Release 4.7.0.2

9.2.2 UID and GID classes

The UID and GID numbers are divided into classes as follows:

0-99:
Globally allocated by the Debian project, the same on every Debian system. These ids will appear in the passwd
and group files of all Debian systems, new ids in this range being added automatically as the base-passwd
package is updated.

Packages which need a single statically allocated uid or gid should use one of these; their maintainers should ask
the base-passwd maintainer for ids.

100-999:
Dynamically allocated system users and groups. Packages which need a user or group, but can have this user or
group allocated dynamically and differently on each system, should use adduser --system to create the group
and/or user. adduser will check for the existence of the user or group, and if necessary choose an unused id based
on the ranges specified in adduser.conf.

1000-59999:
Dynamically allocated user accounts. By default adduser will choose UIDs and GIDs for user accounts in this
range, though adduser.conf may be used to modify this behavior.

60000-64999:
Globally allocated by the Debian project, but only created on demand. The ids are allocated centrally and statically,
but the actual accounts are only created on users’ systems on demand.

These ids are for packages which are obscure or which require many statically-allocated ids. These packages
should check for and create the accounts in /etc/passwd or /etc/group (using adduser if it has this facility)
if necessary. Packages which are likely to require further allocations should have a “hole” left after them in the
allocation, to give them room to grow.

65000-65533:
Reserved.

65534:
User nobody. The corresponding gid refers to the group nogroup.

65535:
This value must not be used, because it was the error return sentinel value when uid_t was 16 bits.

65536-4294967293:
Dynamically allocated user accounts. By default adduser will not allocate UIDs and GIDs in this range, to ease
compatibility with legacy systems where uid_t is still 16 bits.

4294967294:
(uid_t)(-2) == (gid_t)(-2) must not be used, because it is used as the anonymous, unauthenticated user
by some NFS implementations.

4294967295:
(uid_t)(-1) == (gid_t)(-1) must not be used, because it is the error return sentinel value.

9.2.3 Non-existent home directories

The canonical non-existent home directory is /nonexistent. Users who should not have a home directory should have
their home directory set to this value.

The Debian autobuilders set HOME to /nonexistent so that packages which try to write to a home directory will fail
to build.

80 Chapter 9. The Operating System

Debian Policy Manual, Release 4.7.0.2

9.3 Starting system services

Debian packages that provide system services should arrange for those services to be automatically started and stopped
by the init system or service manager. This section describes how that is done.

9.3.1 Introduction

The default init system and service manager in Debian is systemd. Packages that wish to automatically start and stop
system services must include systemd service units to do so, unless the service is only intended for use on systems
running alternate init systems. See systemd.service(5) for details on the syntax of a service unit file.

In the common case that a package includes a single system service, the service unit should have the same name as the
package plus the .service extension.

Packages including a service unit may optionally include an init script to support other init systems. In this case, the
init script should have the same name as the systemd service unit so that systemd will ignore it and use the service
unit instead. Packages may also support other init systems by including configuration in the native format of those init
systems.

systemd uses dependency and ordering information contained within the enabled unit files to decide which services to run
and in which order. The sysv-rc runlevel system for sysvinit uses symlinks in /etc/rcn.d to decide which scripts
to run and in which order at boot time and when the init state (or “runlevel”) is changed. See the README.runlevels
file shipped with sysv-rc for implementation details. Other alternatives might exist.

The sections below describe how to write those scripts and configure those symlinks.

9.3.2 Writing the scripts

Init scripts are placed in /etc/init.d. In the common case that a package starts a single service, they should be named
/etc/init.d/package. They should accept one argument, saying what to do:

start

start the service,

stop

stop the service,

restart

stop and restart the service if it’s already running, otherwise start the service

try-restart

restart the service if it’s already running, otherwise just report success.

reload

cause the configuration of the service to be reloaded without actually stopping and restarting the service,

force-reload

cause the configuration to be reloaded if the service supports this, otherwise restart the service.

status

report the current status of the service

The start, stop, restart, and force-reload options should be supported by all init scripts. Supporting status
is encouraged. The reload and try-restart options are optional.

The init.d scripts must ensure that they will behave sensibly (i.e., returning success and not starting multiple copies
of a service) if invoked with start when the service is already running, or with stop when it isn’t, and that they don’t
kill unfortunately-named user processes. The best way to achieve this is usually to use start-stop-daemon with the
--oknodo option.

9.3. Starting system services 81

Debian Policy Manual, Release 4.7.0.2

Be careful of using set -e in init.d scripts. Writing correct init.d scripts requires accepting various error exit
statuses when daemons are already running or already stopped without aborting the init.d script, and common init.
d function libraries are not safe to call with set -e in effect.4 For init.d scripts, it’s often easier to not use set -e

and instead check the result of each command separately.

If a service reloads its configuration automatically (as in the case of cron, for example), the reload option of the init.d
script should behave as if the configuration has been reloaded successfully.

The /etc/init.d scripts must be treated as configuration files, either (if they are present in the package, that is, in
the .deb file) by marking them as conffiles, or, (if they do not exist in the .deb) by managing them correctly in the
maintainer scripts (see Configuration files). This is important since we want to give the local system administrator the
chance to adapt the scripts to the local system, e.g., to disable a service without de-installing the package, or to specify
some special command line options when starting a service, while making sure their changes aren’t lost during the next
package upgrade.

These scripts should not fail obscurely when the configuration files remain but the package has been removed, as config-
uration files remain on the system after the package has been removed. Only when dpkg is executed with the --purge
option will configuration files be removed. In particular, as the /etc/init.d/package script itself is usually a conf-
file, it will remain on the system if the package is removed but not purged. Therefore, you should include a test
statement at the top of the script, like this:

test -f program-executed-later-in-script || exit 0

Often there are some variables in the init.d scripts whose values control the behavior of the scripts, and which a system
administrator is likely to want to change. As the scripts themselves are frequently conffiles, modifying them requires
that the administrator merge in their changes each time the package is upgraded and the conffile changes. To ease
the burden on the system administrator, such configurable values should not be placed directly in the script. Instead, they
should be placed in a file in /etc/default, which typically will have the same base name as the init.d script. This
extra file should be sourced by the script when the script runs. It must contain only variable settings and comments in
POSIX.1-2017 sh format. It must either be a conffile or a configuration file maintained by the package maintainer
scripts. See Configuration files for more details.

To ensure that vital configurable values are always available, the init.d script should set default values for each of
the shell variables it uses, either before sourcing the /etc/default/ file or afterwards using something like the :
${VAR:=default} syntax. Also, the init.d script must behave sensibly and not fail if the /etc/default file is
deleted.

Files and directories under /run, including ones referred to via the compatibility paths /var/run and /var/lock, are
normally stored on a temporary filesystem and are normally not persistent across a reboot. The init.d scripts must
handle this correctly. This will typically mean creating any required subdirectories dynamically when the init.d script
is run. See /run and /run/lock for more information.

9.3.3 Interfacing with init systems

Maintainer scripts for packages including init scripts must use update-rc.d as described below to interact with the
service manager for requests such as enabling or disabling services. They should use invoke-rc.d as described below
to invoke init scripts for requests such as starting and stopping service.

Directly managing the /etc/rc?.d links and directly invoking the /etc/init.d/ init scripts should be done only by
packages providing the init script subsystem (such as init-system-helpers).

4 /lib/lsb/init-functions, which assists in writing LSB-compliant init scripts, may fail if set -e is in effect and echoing status messages
to the console fails, for example.

82 Chapter 9. The Operating System

Debian Policy Manual, Release 4.7.0.2

9.3.3.1 Managing the links

The program update-rc.d is provided for package maintainers to arrange for the proper creation and removal of /etc/
rcn.d symbolic links, or their functional equivalent if another method is being used. It is intended for use in package
maintainer scripts.

You must not include any /etc/rcn.d symbolic links in the actual archive or manually create or remove the symbolic
links inmaintainer scripts; youmust use the update-rc.d program instead. (The former will fail if an alternativemethod
of maintaining runlevel information is being used.) You must not include the /etc/rcn.d directories themselves in the
archive either. (Only the init-system-helpers package is permitted to do so.)

To get the default behavior for your package, put in your postinst script:

update-rc.d package defaults

and in your postrm:

if ["$1" = purge]; then

update-rc.d package remove

fi

The default behaviour is to enable autostarting your package’s daemon. The local administrator can override this using
the command update-rc.d package disable. If, however, the daemon should not be autostarted unless the local
administrator has explicitly requested this, instead add to your postinst script:

update-rc.d package defaults-disabled

and add a dependency on init-system-helpers (>= 1.50), which introduced the defaults-disabled option.
Then the local administrator can enable autostarting the daemon using the command update-rc.d package enable.

An older practice, which should not be used, was to include a line like DISABLED=yes in the package’s /etc/default
file. The package’s init script would not start the service until the local system administrator changed this to DIS-

ABLED=no, or similar. The problem with this approach was that it hides from the init system whether or not the daemon
should actually be started, which leads to inconsistent and confusing behavior: service <package> start could
return success but not start the service; services with a dependency on this service will be started even though the service
isn’t running; and init system status commands could incorrectly claim that the service was started.

Note that if your package changes runlevels or priority, you may have to remove and recreate the links, since otherwise
the old links may persist. Refer to the documentation of update-rc.d.

For more information about using update-rc.d, please consult its man page, update-rc.d(8).

It is easiest for packages not to call update-rc.d directly, but instead use debhelper programs that add the required
update-rc.d calls automatically. See dh_installinit, dh_installsystemd, etc.

9.3.3.2 Running init scripts

The program invoke-rc.d is provided to make it easier for package maintainers to properly invoke an init script,
obeying runlevel and other locally-defined constraints that might limit a package’s right to start, stop and otherwisemanage
services. This program may be used by maintainers in their packages’ scripts.

The package maintainer scripts must use invoke-rc.d to invoke the /etc/init.d/* init scripts or equivalent instead
of calling them directly.

By default, invoke-rc.dwill pass any action requests (start, stop, reload, restart…) to the /etc/init.d script, filtering
out requests to start or restart a service out of its intended runlevels.

Most packages will simply use:

9.3. Starting system services 83

Debian Policy Manual, Release 4.7.0.2

invoke-rc.d package action

in their postinst and prerm scripts.

A package should register its init script services using update-rc.d before it tries to invoke them using invoke-rc.d.
Invocation of unregistered services may fail.

For more information about using invoke-rc.d, please consult its man page, invoke-rc.d(8).

It is easiest for packages not to call invoke-rc.d directly, but instead use debhelper programs that add the required
invoke-rc.d calls automatically. See dh_installinit, dh_installsystemd, etc.

9.3.4 Boot-time initialization

This section has been deleted.

9.3.5 Example

Examples on which you can base your systemd service units are available in the man page systemd.unit(5). An
example on which you can base your init scripts is available in the man page init-d-script(5).

9.4 Console messages from init.d scripts

This section has been deleted.

9.5 Cron jobs

Packages must not modify the configuration file /etc/crontab, and they must not modify the files in /var/spool/
cron/crontabs.

If a package wants to install a job that has to be executed via cron, it should place a file named as specified in Cron job
file names into one or more of the following directories:

• /etc/cron.hourly

• /etc/cron.daily

• /etc/cron.weekly

• /etc/cron.monthly

As these directory names imply, the files within them are executed on an hourly, daily, weekly, or monthly basis, respec-
tively. The exact times are listed in /etc/crontab.

All files installed in any of these directories must be scripts (e.g., shell scripts or Perl scripts) so that they can easily be
modified by the local system administrator. In addition, they must be treated as configuration files.

If a certain job has to be executed at some other frequency or at a specific time, the package should install a file in /
etc/cron.d with a name as specified in Cron job file names. This file uses the same syntax as /etc/crontab and is
processed by cron automatically. The file must also be treated as a configuration file. (Note that entries in the /etc/
cron.d directory are not handled by anacron. Thus, you should only use this directory for jobs which may be skipped
if the system is not running.)

Unlike crontab files described in the IEEE Std 1003.1-2008 (POSIX.1) available from The Open Group, the files in
/etc/cron.d and the file /etc/crontab have seven fields; namely:

1. Minute [0,59]

2. Hour [0,23]

84 Chapter 9. The Operating System

https://www.opengroup.org/onlinepubs/9699919799/

Debian Policy Manual, Release 4.7.0.2

3. Day of the month [1,31]

4. Month of the year [1,12]

5. Day of the week ([0,6] with 0=Sunday)

6. Username

7. Command to be run

Ranges of numbers are allowed. Ranges are two numbers separated with a hyphen. The specified range is inclusive. Lists
are allowed. A list is a set of numbers (or ranges) separated by commas. Step values can be used in conjunction with
ranges.

The scripts or crontab entries in these directories should check if all necessary programs are installed before they try to
execute them. Otherwise, problems will arise when a package was removed but not purged since configuration files are
kept on the system in this situation.

Any cron daemon must provide /usr/bin/crontab and support normal crontab entries as specified in POSIX.
The daemon must also support names for days and months, ranges, and step values. It has to support /etc/crontab,
and correctly execute the scripts in /etc/cron.d. The daemon must also correctly execute scripts in /etc/cron.
{hourly,daily,weekly,monthly}.

9.5.1 Cron job file names

The file name of a cron job file should normally match the name of the package from which it comes.

If a package supplies multiple cron job files files in the same directory, the file names should all start with the name of
the package (possibly modified as described below) followed by a hyphen (-) and a suitable suffix.

A cron job file name must not include any period or plus characters (. or +) characters as this will cause cron to ignore
the file. Underscores (_) should be used instead of . and + characters.

9.6 Menus

Packages shipping applications that comply with minimal requirements described below for integration with desktop
environments should register these applications in the desktop menu, following the FreeDesktop standard, using text
files called desktop entries. Their format is described in the Desktop Entry Specification at https://standards.freedesktop.
org/desktop-entry-spec/latest/ and complementary information can be found in the Desktop Menu Specification at https:
//standards.freedesktop.org/menu-spec/latest/.

The desktop entry files are installed by the packages in the directory /usr/share/applications and the FreeDesktop
menus are refreshed using dpkg triggers. It is therefore not necessary to depend on packages providing FreeDesktop menu
systems.

Entries displayed in the FreeDesktop menu should conform to the following minima for relevance and visual integration.

• Unless hidden by default, the desktop entry must point to a PNG or SVG icon with a transparent background,
providing at least the 22×22 size, and preferably up to 64×64. The icon should be neutral enough to integrate well
with the default icon themes. It is encouraged to ship the icon in the default hicolor icon theme directories, or to
use an existing icon from the hicolor theme.

• If the menu entry is not useful in the general case as a standalone application, the desktop entry should set the
NoDisplay key to true, so that it can be configured to be displayed only by those who need it.

• In doubt, the package maintainer should coordinate with the maintainers of menu implementations through the
debian-desktop mailing list in order to avoid problems with categories or bad interactions with other icons. Espe-
cially for packages which are part of installation tasks, the contents of the NotShowIn/OnlyShowIn keys should
be validated by the maintainers of the relevant environments.

9.6. Menus 85

https://standards.freedesktop.org/desktop-entry-spec/latest/
https://standards.freedesktop.org/desktop-entry-spec/latest/
https://standards.freedesktop.org/menu-spec/latest/
https://standards.freedesktop.org/menu-spec/latest/

Debian Policy Manual, Release 4.7.0.2

Since the FreeDesktop menu is a cross-distribution standard, the desktop entries written for Debian should be forwarded
upstream, where they will benefit to other users and are more likely to receive extra contributions such as translations.

If a package installs a FreeDesktop desktop entry, it must not also install a Debian menu entry.

9.7 Multimedia handlers

Media types (formerly known as MIME types, Multipurpose Internet Mail Extensions, RFCs 2045-2049) is a mechanism
for encoding files and data streams and providing meta-information about them, in particular their type and format (e.g.
image/png, text/html, audio/ogg).

Registration of media type handlers allows programs like mail user agents and web browsers to invoke these handlers to
view, edit or display media types they don’t support directly.

There are two overlapping systems to associate media types to programs which can handle them. The mailcap system
is found on a large number of Unix systems. The FreeDesktop system is aimed at Desktop environments. In Debian,
FreeDesktop entries are automatically translated in mailcap entries, therefore packages already using desktop entries
should not use the mailcap system directly.

9.7.1 Registration of media type handlers with desktop entries

Packages shipping an application able to view, edit or point to files of a given media type, or open links with a given URI
scheme, should list it in the MimeType key of the application’s desktop entry. For URI schemes, the relevant MIME types
are x-scheme-handler/* (e.g. x-scheme-handler/https).

9.7.2 Registration of media type handlers with mailcap entries

Packages that are not using desktop entries for registration should install a file in mailcap(5) format (RFC 1524) in the
directory /usr/lib/mime/packages/. The file name should be the binary package’s name.

The mailcap package provides the update-mime program, which integrates these registrations in the /etc/mailcap
file, using dpkg triggers.5

Packages installing desktop entries should not install mailcap entries for the same program, because the mailcap package
already reads desktop entries.

Packages using these facilities should not depend on, recommend, or suggest mailcap.

9.7.3 Providing media types to files

The media type of a file is discovered by inspecting the file’s extension or its magic(5) pattern, and interrogating a
database associating them with media types.

To support new associations between media types and files, their characteristic file extensions and magic patterns should
be registered to the IANA (Internet Assigned Numbers Authority). See https://www.iana.org/assignments/media-types
and RFC 6838 for details. This information will then propagate to the systems discovering file media types in Debian,
provided by the shared-mime-info, media-types and file packages. If registration and propagation can not be waited for,
support can be asked to the maintainers of the packages mentioned above.

For files that are produced and read by a single application, it is also possible to declare this association to the Shared
MIME Info system by installing in the directory /usr/share/mime/packages a file in the XML format specified at
https://standards.freedesktop.org/shared-mime-info-spec/latest/.

5 Creating, modifying or removing a file in /usr/lib/mime/packages/ using maintainer scripts will not activate the trigger. In that case, it can
be done by calling dpkg-trigger --no-await /usr/lib/mime/packages from the maintainer script after creating, modifying, or removing
the file.

86 Chapter 9. The Operating System

https://www.iana.org/assignments/media-types
https://standards.freedesktop.org/shared-mime-info-spec/latest/

Debian Policy Manual, Release 4.7.0.2

9.8 Keyboard configuration

To achieve a consistent keyboard configuration so that all applications interpret a keyboard event the same way, all pro-
grams in the Debian distribution must be configured to comply with the following guidelines.

The following keys must have the specified interpretations:

<--

delete the character to the left of the cursor

Delete

delete the character to the right of the cursor

Control+H

emacs: the help prefix

The interpretation of any keyboard events should be independent of the terminal that is used, be it a virtual console, an
X terminal emulator, an rlogin/telnet session, etc.

The following list explains how the different programs should be set up to achieve this:

• <-- generates KB_BackSpace in X.

• Delete generates KB_Delete in X.

• X translations are set up to make KB_Backspace generate ASCII DEL, and to make KB_Delete generate ESC [

3 ~ (this is the vt220 escape code for the “delete character” key). Thismust be done by loading theX resources using
xrdb on all local X displays, not using the application defaults, so that the translation resources used correspond
to the xmodmap settings.

• The Linux console is configured to make <-- generate DEL, and Delete generate ESC [3 ~.

• X applications are configured so that < deletes left, and Delete deletes right. Motif applications already work like
this.

• Terminals should have stty erase ^? .

• The xterm terminfo entry should have ESC [3 ~ for kdch1, just as for TERM=linux and TERM=vt220.

• Emacs is programmed to map KB_Backspace or the stty erase character to delete-backward-char, and
KB_Delete or kdch1 to delete-forward-char, and ^H to help as always.

• Other applications use the stty erase character and kdch1 for the two delete keys, with ASCII DEL being
“delete previous character” and kdch1 being “delete character under cursor”.

This will solve the problem except for the following cases:

• Some terminals have a <-- key that cannot be made to produce anything except ^H. On these terminals Emacs
help will be unavailable on ^H (assuming that the stty erase character takes precedence in Emacs, and has been
set correctly). M-x help or F1 (if available) can be used instead.

• Some operating systems use ^H for stty erase. However, modern telnet versions and all rlogin versions propagate
stty settings, and almost all UNIX versions honour stty erase. Where the stty settings are not propagated
correctly, things can be made to work by using stty manually.

• Some systems (including previous Debian versions) use xmodmap to arrange for both <-- and Delete to generate
KB_Delete. We can change the behavior of their X clients using the same X resources that we use to do it for
our own clients, or configure our clients using their resources when things are the other way around. On displays
configured like this Delete will not work, but <-- will.

• Some operating systems have different kdch1 settings in their terminfo database for xterm and others. On these
systems the Delete key will not work correctly when you log in from a system conforming to our policy, but <--
will.

9.8. Keyboard configuration 87

Debian Policy Manual, Release 4.7.0.2

9.9 Environment variables

Programs installed on the system PATH (/bin, /usr/bin, /sbin, /usr/sbin, or similar directories) must not depend
on custom environment variable settings to get reasonable defaults. This is because such environment variables would
have to be set in a system-wide configuration file such as a file in /etc/profile.d, which is not supported by all shells.

If a program usually depends on environment variables for its configuration, the program should be changed to fall back
to a reasonable default configuration if these environment variables are not present. If this cannot be done easily (e.g., if
the source code of a non-free program is not available), the program must be replaced by a small “wrapper” shell script
that sets the environment variables if they are not already defined, and calls the original program.

Here is an example of a wrapper script for this purpose:

#!/bin/sh

BAR=${BAR:-/var/lib/fubar}

export BAR

exec /usr/lib/foo/foo "$@"

9.10 Registering Documents using doc-base

The doc-base package implements a mechanism for handling and presenting documentation. Debian packages that pro-
vides online documentation (other than just manual pages) may register these documents with doc-base by installing a
doc-base control file in /usr/share/doc-base/.

Please refer to the documentation that comes with the doc-base package for information and details.

9.11 Alternate init systems

This section has been deleted.

9.11.1 Event-based boot with upstart

The upstart event-based boot system is no longer maintained in Debian, so this section has been removed.

9.12 Signaling that a reboot is required

Programs can signal that a reboot is required by touching /run/reboot-required. It is conventional to add the name
of the package(s) requiring the reboot to /run/reboot-required.pkgs. Programs should not add a package name
to /run/reboot-required.pkgs if it is already present there.

The /run/reboot-required mechanism is used when a reboot is needed to fully apply the changes introduced by
package installation or upgrade. Typically it is the postinstmaintainer script that touches /run/reboot-required,
at the end of a successful configuration of the package.

There are no guarantees provided by the /run/reboot-required convention as to when or whether the requested
reboot will occur.

88 Chapter 9. The Operating System

CHAPTER

TEN

FILES

10.1 Binaries

Two different packages must not install programs with different functionality but with the same filenames. (The case of
two programs having the same functionality but different implementations is handled via “alternatives” or the “Conflicts”
mechanism. See Maintainer Scripts and Conflicting binary packages - Conflicts respectively.) If this case happens, one of
the programs must be renamed. The maintainers should report this to the debian-devel mailing list and try to find
a consensus about which program will have to be renamed. If a consensus cannot be reached, both programs must be
renamed.

To support merged-/usr systems, packages must not install files in both /path and /usr/path. For example, a package
must not install both /bin/example and /usr/bin/example.

If a file is moved between /path and /usr/path in revisions of a Debian package, and a compatibility symlink at the
old path is needed, the symlink must be managed in a way that will not break when /path and /usr/path are the same
underlying directory due to symlinks or other mechanisms.

Binary executables must not be statically linked with the GNU C library, since this prevents the binary from benefiting
from fixes and improvements to the C library without being rebuilt and complicates security updates. This requirement
may be relaxed for binary executables whose intended purpose is to diagnose and fix the system in situations where the
GNU C library may not be usable (such as system recovery shells or utilities like ldconfig) or for binary executables where
the security benefits of static linking outweigh the drawbacks.

By default, when a package is being built, any binaries created should include debugging information, as well as being
compiled with optimization. You should also turn on as many reasonable compilation warnings as possible (see Main
building script: debian/rules). For the C programming language, this means the following compilation parameters should
be used:

CC = gcc

CFLAGS = -O2 -g -Wall # sane warning options vary between programs

LDFLAGS = # none

By default all installed binaries should be stripped by calling

strip --strip-unneeded --remove-section=.comment --remove-section=.note binaries

on the binaries after they have been copied into debian/tmp but before the tree is made into a package.

It is not recommended to strip binaries by passing the -s flag to install, because this fails to remove .comment and
.note sections, and also prevents the automatic creation of dbgsym binary packages by tools like dh_strip.

Although binaries in the build tree should be compiled with debugging information by default, it can often be difficult to
debug programs if they are also subjected to compiler optimization. For this reason, it is recommended to support the
standardized environment variable DEB_BUILD_OPTIONS (see debian/rules and DEB_BUILD_OPTIONS). This variable
can contain several flags to change how a package is compiled and built.

89

Debian Policy Manual, Release 4.7.0.2

It is up to the package maintainer to decide what compilation options are best for the package. Certain binaries (such
as computationally-intensive programs) will function better with certain flags (-O3, for example); feel free to use them.
Please use good judgment here. Don’t use flags for the sake of it; only use them if there is good reason to do so. Feel
free to override the upstream author’s ideas about which compilation options are best: they are often inappropriate for
our environment.

10.2 Libraries

If the package is architecture: any, then the shared library compilation and linking flags must have -fPIC, or the
package shall not build on some of the supported architectures.1 Any exception to this rule must be discussed on the
mailing list debian-devel@lists.debian.org, and a rough consensus obtained. The reasons for not compiling with -fPIC
flag must be recorded in the file README.Debian, and care must be taken to either restrict the architecture or arrange
for -fPIC to be used on architectures where it is required.2

As to the static libraries, the common case is not to have relocatable code, since there is no benefit, unless in specific cases;
therefore the static version must not be compiled with the -fPIC flag. Any exception to this rule should be discussed on
the mailing list debian-devel@lists.debian.org, and the reasons for compiling with the -fPIC flag must be recorded in the
file README.Debian.3

In other words, if both a shared and a static library is being built, each source unit (*.c, for example, for C files) will
need to be compiled twice, for the normal case.

Libraries should be built with threading support and to be thread-safe if the library supports this.

Although not enforced by the build tools, shared libraries must be linked against all libraries that they use symbols from
in the same way that binaries are. This ensures the correct functioning of the symbols and shlibs systems and guarantees
that all libraries can be safely opened with dlopen(). Packagers may wish to use the gcc option -Wl,-z,defs when
building a shared library. Since this option enforces symbol resolution at build time, a missing library reference will be
caught early as a fatal build error.

All installed shared libraries should be stripped with

strip --strip-unneeded --remove-section=.comment --remove-section=.note your-lib

(The option --strip-unneededmakes strip remove only the symbols which aren’t needed for relocation processing.)
Shared libraries can function perfectly well when stripped, since the symbols for dynamic linking are in a separate part
of the ELF object file.4

Note that under some circumstances it may be useful to install a shared library unstripped, for example when building a
separate package to support debugging. The debhelper dh_strip` tool can create such packages automatically.

Shared object files (often .so files) that are not public libraries, that is, they are not meant to be linked to by third party
executables (binaries of other packages), should be installed in subdirectories of the /usr/lib or /usr/lib/triplet
directories (see the FHS for a definition). Such files are exempt from the rules that govern ordinary shared libraries,
except that they must not be installed executable and should be stripped.5

1 If you are using GCC, -fPIC produces code with relocatable position independent code, which is required for most architectures to create a
shared library, with i386 and perhaps some others where non position independent code is permitted in a shared library.
Position independent code may have a performance penalty, especially on i386. However, in most cases the speed penalty must be measured against

the memory wasted on the few architectures where non position independent code is even possible.
2 Some of the reasons why this might be required is if the library contains hand crafted assembly code that is not relocatable, the speed penalty is

excessive for compute intensive libs, and similar reasons.
3 Some of the reasons for linking static libraries with the -fPIC flag are if, for example, one needs a Perl API for a library that is under rapid

development, and has an unstable API, so shared libraries are pointless at this phase of the library’s development. In that case, since Perl needs a library
with relocatable code, it may make sense to create a static library with relocatable code. Another reason cited is if you are distilling various libraries
into a common shared library, like mklibs does in the Debian installer project.

4 You might want to replace --strip-unneeded with --strip-debug for static libraries, as dh_strip does. When stripping static libraries, you
should also pass --enable-deterministic-archives to ensure that your package build is reproducible.

5 A common example are the so-called “plug-ins”, internal shared objects that are dynamically loaded by programs using dlopen(3).

90 Chapter 10. Files

Debian Policy Manual, Release 4.7.0.2

Packages that use libtool to create and install their shared libraries install a file containing additional metadata (ending
in .la) alongside the library. For public libraries intended for use by other packages, these files normally should not
be included in the Debian package, since the information they include is not necessary to link with the shared library on
Debian and can add unnecessary additional dependencies to other programs or libraries.6 If the .la file is required for that
library (if, for instance, it’s loaded via libltdl in a way that requires that meta-information), the dependency_libs
setting in the .la file should normally be set to the empty string. If the shared library development package has historically
included the .la, it must be retained in the development package (with dependency_libs emptied) until all libraries
that depend on it have removed or emptied dependency_libs in their .la files to prevent linking with those other
libraries using libtool from failing.

If the .la must be included, it should be included in the development (-dev) package, unless the library will be loaded
by libtool’s libltdl library. If it is intended for use with libltdl, the .la files must go in the run-time library
package.

These requirements for handling of .la files do not apply to loadable modules or libraries not installed in directories
searched by default by the dynamic linker. Packages installing loadable modules will frequently need to install the .la
files alongside the modules so that they can be loaded by libltdl. dependency_libs does not need to be modified
for libraries or modules that are not installed in directories searched by the dynamic linker by default and not intended
for use by other packages.

You must make sure that you use only released versions of shared libraries to build your packages; otherwise other users
will not be able to run your binaries properly. Producing source packages that depend on unreleased compilers is also
usually a bad idea.

10.3 Shared libraries

This section has moved to Shared libraries.

10.4 Scripts

All command scripts, including the package maintainer scripts inside the package and used by dpkg, should have a #!
line naming the shell to be used to interpret them.

In the case of Perl scripts this should be #!/usr/bin/perl.

When scripts are installed into a directory in the system PATH, the script name should not include an extension such as
.sh or .pl that denotes the scripting language currently used to implement it.

Shell scripts (sh and bash) other than init.d scripts should almost certainly start with set -e so that errors are
detected. init.d scripts are something of a special case, due to how frequently they need to call commands that are
allowed to fail, and it may instead be easier to check the exit status of commands directly. SeeWriting the scripts for more
information about writing init.d scripts.

Every script should use set -e or check the exit status of every command.

Scripts may assume that /bin/sh implements the POSIX.1-2017 Shell Command Language7 plus the following addi-
tional features not mandated by POSIX.1-2017..8

• echo -n, if implemented as a shell built-in, must not generate a newline.

6 These files store, among other things, all libraries on which that shared library depends. Unfortunately, if the .la file is present and contains
that dependency information, using libtool when linking against that library will cause the resulting program or library to be linked against those
dependencies as well, even if this is unnecessary. This can create unneeded dependencies on shared library packages that would otherwise be hidden
behind the library ABI, and can make library transitions to new SONAMEs unnecessarily complicated and difficult to manage.

7 The Open Group Base Specifications Issue 7, 2018 Edition, which is also known as POSIX.1-2017 and as IEEE Std 1003.1-2017 and is available
on the World Wide Web from The Open Group.

8 These features are in widespread use in the Linux community and are implemented in all of bash, dash, and ksh, the most common shells users
may wish to use as /bin/sh.

10.3. Shared libraries 91

http://pubs.opengroup.org/onlinepubs/9699919799/download/

Debian Policy Manual, Release 4.7.0.2

• test, if implemented as a shell built-in, must support -a and -o as binary logical operators.

• local to create a scoped variable must be supported, including listing multiple variables in a single local command
and assigning a value to a variable at the same time as localizing it. local may or may not preserve the variable
value from an outer scope if no assignment is present. Uses such as:

fname () {

local a b c=delta d

... use a, b, c, d ...

}

must be supported and must set the value of c to delta.

• The XSI extension to kill allowing kill -signal, where signal is either the name of a signal or one of the
numeric signals listed in the XSI extension (0, 1, 2, 3, 6, 9, 14, and 15), must be supported if kill is implemented
as a shell built-in.

• The XSI extension to trap allowing numeric signals must be supported. In addition to the signal numbers listed
in the extension, which are the same as for kill above, 13 (SIGPIPE) must be allowed.

If a shell script requires non-POSIX.1-2017 features from the shell interpreter other than those listed above, the appro-
priate shell must be specified in the first line of the script (e.g., #!/bin/bash) and the package must depend on the
package providing the shell (unless the shell package is marked “Essential”, as in the case of bash).

You may wish to restrict your script to POSIX.1-2017 features plus the above set when possible so that it may use /bin/
sh as its interpreter. Checking your script with checkbashisms from the devscripts package or running your script
with an alternate shell such as posh may help uncover violations of the above requirements. If in doubt whether a script
complies with these requirements, use /bin/bash.

Perl scripts should check for errors when making any system calls, including open, print, close, rename and system.

csh and tcsh should be avoided as scripting languages. See Csh Programming Considered Harmful, one of the comp.
unix.* FAQs, which can be found at http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/. If an upstream package
comes with csh scripts then you must make sure that they start with #!/bin/csh and make your package depend on
the c-shell virtual package.

Any scripts which create files in world-writeable directories (e.g., in /tmp) must use a mechanism which will fail atomi-
cally if a file with the same name already exists.

The Debian base system provides the tempfile and mktemp utilities for use by scripts for this purpose.

10.5 Symbolic links

In general, symbolic links within a top-level directory should be relative, and symbolic links pointing from one top-
level directory to or into another should be absolute. (A top-level directory is a sub-directory of the root directory /.)
For example, a symbolic link from /usr/lib/foo to /usr/share/bar should be relative (../share/bar), but a
symbolic link from /var/run to /run should be absolute.9 Symbolic links must not traverse above the root directory.

In addition, symbolic links should be specified as short as possible, i.e., link targets like foo/../bar are deprecated.

Note that when creating a relative link using ln it is not necessary for the target of the link to exist relative to the working
directory you’re running ln from, nor is it necessary to change directory to the directory where the link is to be made.
Simply include the string that should appear as the target of the link (this will be a pathname relative to the directory in
which the link resides) as the first argument to ln.

For example, in your Makefile or debian/rules, you can do things like:
9 This is necessary to allow top-level directories to be symlinks. If linking /var/run to /run were done with the relative symbolic link ../run,

but /var were a symbolic link to /srv/disk1, the symbolic link would point to /srv/run rather than the intended target.

92 Chapter 10. Files

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

Debian Policy Manual, Release 4.7.0.2

ln -fs gcc $(prefix)/bin/cc

ln -fs gcc debian/tmp/usr/bin/cc

ln -fs ../sbin/sendmail $(prefix)/bin/runq

ln -fs ../sbin/sendmail debian/tmp/usr/bin/runq

A symbolic link pointing to a compressed file (in the sense that it is meant to be uncompressed with unzip or zless
etc.) should always have the same file extension as the referenced file. (For example, if a file foo.gz is referenced by a
symbolic link, the filename of the link has to end with “.gz” too, as in bar.gz.)

10.6 Device files

Packages must not include device files or named pipes in the package file tree.

Debian packages should assume that device files in /dev are dynamically managed by the kernel or some other system
facility and do not have to be explicitly created or managed by the package. Debian packages other than those whose
purpose is to manage the /dev device file tree must not attempt to create or remove device files in /dev when a dynamic
device management facility is in use.

If named pipes or device files outside of /dev are required by a package, they should normally be created when necessary
by the programs in the package, by init scripts or systemd unit files, or by similar on-demand mechanisms. If such files
need to be created during package installation, they must be created in the postinst maintainer script10 and removed
in either the prerm or the postrm maintainer script.

10.7 Configuration files

10.7.1 Definitions

configuration file
A file that affects the operation of a program, or provides site- or host-specific information, or otherwise customizes
the behavior of a program. Typically, configuration files are intended to be modified by the system administrator
(if needed or desired) to conform to local policy or to provide more useful site-specific behavior.

conffile

A file listed in a package’s conffiles file, and is treated specially by dpkg (see Details of configuration).

The distinction between these two is important; they are not interchangeable concepts. Almost all conffiles are con-
figuration files, but many configuration files are not conffiles.

As noted elsewhere, /etc/init.d scripts, /etc/default files, scripts installed in /etc/cron.{hourly,daily,
weekly,monthly}, and cron configuration installed in /etc/cron.dmust be treated as configuration files. In general,
any script that embeds configuration information is de-facto a configuration file and should be treated as such.

10.7.2 Location

Any configuration files created or used by your package must reside in /etc. If there are several, consider creating a
subdirectory of /etc named after your package.

If your package creates or uses configuration files outside of /etc, and it is not feasible to modify the package to use
/etc directly, put the files in /etc and create symbolic links to those files from the location that the package requires.

10 It’s better to use mkfifo rather than mknod to create named pipes to avoid false positives from automated checks for packages incorrectly creating
device files.

10.6. Device files 93

Debian Policy Manual, Release 4.7.0.2

10.7.3 Behavior

Configuration file handling must conform to the following behavior:

• local changes must be preserved during a package upgrade, and

• configuration files must be preserved when the package is removed, and only deleted when the package is purged.

Obsolete configuration files without local changes should be removed by the package during upgrade.11

The easy way to achieve this behavior is tomake the configuration file a conffile. This is appropriate only if it is possible
to distribute a default version that will work for most installations, although some system administrators may choose to
modify it. This implies that the default version will be part of the package distribution, and must not be modified by the
maintainer scripts during installation (or at any other time).

In order to ensure that local changes are preserved correctly, packages must not contain or make hard links to conffiles.12

The other way to do it is via the maintainer scripts. In this case, the configuration file must not be listed as a conffile and
must not be part of the package distribution. If the existence of a file is required for the package to be sensibly configured
it is the responsibility of the package maintainer to provide maintainer scripts which correctly create, update and maintain
the file and remove it on purge. (See Package maintainer scripts and installation procedure for more information.) These
scripts must be idempotent (i.e., must work correctly if dpkg needs to re-run them due to errors during installation
or removal), must cope with all the variety of ways dpkg can call maintainer scripts, must not overwrite or otherwise
mangle the user’s configuration without asking, must not ask unnecessary questions (particularly during upgrades), and
must otherwise be good citizens.

The scripts are not required to configure every possible option for the package, but only those necessary to get the
package running on a given system. Ideally the sysadmin should not have to do any configuration other than that done
(semi-)automatically by the postinst script.

A common practice is to create a script called package-configure and have the package’s postinst call it if and
only if the configuration file does not already exist. In certain cases it is useful for there to be an example or template file
which the maintainer scripts use. Such files should be in /usr/share/package or /usr/lib/package (depending
on whether they are architecture-independent or not). There should be symbolic links to them from /usr/share/doc/

package/examples if they are examples, and should be perfectly ordinary dpkg-handled files (not configuration files).

These two styles of configuration file handling must not be mixed, for that way lies madness: dpkg will ask about over-
writing the file every time the package is upgraded.

10.7.4 Sharing configuration files

If two or more packages use the same configuration file and it is reasonable for both to be installed at the same time, one
of these packages must be defined as owner of the configuration file, i.e., it will be the package which handles that file
as a configuration file. Other packages that use the configuration file must depend on the owning package if they require
the configuration file to operate. If the other package will use the configuration file if present, but is capable of operating
without it, no dependency need be declared.

If it is desirable for two or more related packages to share a configuration file and for all of the related packages to be
able to modify that configuration file, then the following should be done:

1. One of the related packages (the “owning” package) will manage the configuration file with maintainer scripts as
described in the previous section.

2. The owning package should also provide a program that the other packages may use to modify the configuration
file.

3. The related packages must use the provided program to make any desired modifications to the configuration file.
They should either depend on the core package to guarantee that the configuration modifier program is available

11 The dpkg-maintscript-helper tool, available from the dpkg package, can help for this task.
12 Rationale: There are two problems with hard links. The first is that some editors break the link while editing one of the files, so that the two files

may unwittingly become unlinked and different. The second is that dpkg might break the hard link while upgrading conffiles.

94 Chapter 10. Files

Debian Policy Manual, Release 4.7.0.2

or accept gracefully that they cannot modify the configuration file if it is not. (This is in addition to the fact that
the configuration file may not even be present in the latter scenario.)

Sometimes it’s appropriate to create a new package which provides the basic infrastructure for the other packages and
which manages the shared configuration files. (The sgml-base package is a good example.)

If the configuration file cannot be shared as described above, the packages must be marked as conflicting with each other.
Two packages that specify the same file as a conffile must conflict. This is an instance of the general rule about not
sharing files. Neither alternatives nor diversions are likely to be appropriate in this case; in particular, dpkg does not
handle diverted conffiles well.

When two packages both declare the same conffile, they may see left-over configuration files from each other even
though they conflict with each other. If a user removes (without purging) one of the packages and installs the other, the
new package will take over the conffile from the old package. If the file was modified by the user, it will be treated
the same as any other locally modified conffile during an upgrade.

The maintainer scripts must not alter a conffile of any package, including the one the scripts belong to.

10.7.5 User configuration files (“dotfiles”)

The files in /etc/skel will automatically be copied into new user accounts by adduser. No other program should
reference the files in /etc/skel.

Therefore, if a program needs a dotfile to exist in advance in $HOME to work sensibly, that dotfile should be installed in
/etc/skel and treated as a configuration file.

However, programs that require dotfiles in order to operate sensibly are a bad thing, unless they do create the dotfiles
themselves automatically.

Furthermore, programs should be configured by the Debian default installation to behave as closely to the upstream default
behavior as possible.

Therefore, if a program in a Debian package needs to be configured in some way in order to operate sensibly, that should
be done using a site-wide configuration file placed in /etc. Only if the program doesn’t support a site-wide default
configuration and the package maintainer doesn’t have time to add it may a default per-user file be placed in /etc/skel.

/etc/skel should be as empty as we can make it. This is particularly true because there is no easy (or necessarily
desirable) mechanism for ensuring that the appropriate dotfiles are copied into the accounts of existing users when a
package is installed.

10.8 Log files

Log files should usually be named /var/log/package.log. If you have many log files, or need a separate directory
for permission reasons (/var/log is writable only by root), you should usually create a directory named /var/log/
package and place your log files there.

Log files must be rotated occasionally so that they don’t grow indefinitely. The best way to do this is to install a log
rotation configuration file in the directory /etc/logrotate.d, normally named /etc/logrotate.d/package, and
use the facilities provided by logrotate.13 Here is a good example for a logrotate config file (for more information see
logrotate(8)):

/var/log/foo/*.log {

rotate 12

(continues on next page)

13 The traditional approach to log files has been to set up ad hoc log rotation schemes using simple shell scripts and cron. While this approach is
highly customizable, it requires quite a lot of sysadmin work. Even though the original Debian system helped a little by automatically installing a system
which can be used as a template, this was deemed not enough.
The use of logrotate, a program developed by Red Hat, is better, as it centralizes log management. It has both a configuration file (/etc/

logrotate.conf) and a directory where packages can drop their individual log rotation configurations (/etc/logrotate.d).

10.8. Log files 95

Debian Policy Manual, Release 4.7.0.2

(continued from previous page)

weekly

compress

missingok

postrotate

start-stop-daemon -K -p /var/run/foo.pid -s HUP -x /usr/sbin/foo -q

endscript

}

This rotates all files under /var/log/foo, saves 12 compressed generations, and tells the daemon to reopen its log files
after the log rotation. It skips this log rotation (via missingok) if no such log file is present, which avoids errors if the
package is removed but not purged.

Log files should be removed when the package is purged (but not when it is only removed). This should be done by the
postrm script when it is called with the argument purge (see Details of removal and/or configuration purging).

10.9 Permissions and owners

The rules in this section are guidelines for general use. If necessary you may deviate from the details below. However, if
you do so you must make sure that what is done is secure and you should try to be as consistent as possible with the rest
of the system. You are also encouraged to discuss it on debian-devel first.

Files should be owned by root:root, and made writable only by the owner and universally readable (and executable, if
appropriate), that is mode 644 or 755.

Directories should bemode 755 or (for group-writability) mode 2775. The ownership of the directory should be consistent
with its mode: if a directory is mode 2775, it should be owned by the group that needs write access to it.14

Control information files should be owned by root:root and either mode 644 (for most files) or mode 755 (for exe-
cutables such as maintainer scripts).

Setuid and setgid executables should be mode 4755 or 2755 respectively, and owned by the appropriate user or group.
They should not bemade unreadable (modes like 4711 or 2711 or even 4111); doing so achieves no extra security, because
anyone can find the binary in the freely available Debian package; it is merely inconvenient. For the same reason you
should not restrict read or execute permissions on non-set-id executables.

Some setuid programs need to be restricted to particular sets of users, using file permissions. In this case they should be
owned by the uid to which they are set-id, and by the group which should be allowed to execute them. They should have
mode 4754; again there is no point in making them unreadable to those users who must not be allowed to execute them.

It is possible to arrange that the system administrator can reconfigure the package to correspond to their local security
policy by changing the permissions on a binary: they can do this by using dpkg-statoverride, as described below.15

Another method you should consider is to create a group for people allowed to use the program(s) and make any setuid
executables executable only by that group.

If you need to create a new user or group for your package there are two possibilities. Firstly, you may need to make
some files in the binary package be owned by this user or group, or you may need to compile the user or group id (rather
than just the name) into the binary (though this latter should be avoided if possible, as in this case you need a statically
allocated id).

14 When a package is upgraded, and the owner or permissions of a file included in the package has changed, dpkg arranges for the ownership and
permissions to be correctly set upon installation. However, this does not extend to directories; the permissions and ownership of directories already on
the system does not change on install or upgrade of packages. This makes sense, since otherwise common directories like /usr would always be in
flux. To correctly change permissions of a directory the package owns, explicit action is required, usually in the postinst script. Care must be taken
to handle downgrades as well, in that case.

15 Ordinary files installed by dpkg (as opposed to conffiles and other similar objects) normally have their permissions reset to the distributed
permissions when the package is reinstalled. However, the use of dpkg-statoverride overrides this default behavior.

96 Chapter 10. Files

Debian Policy Manual, Release 4.7.0.2

If you need a statically allocated id, you must ask for a user or group id from the base-passwd maintainer, and must
not release the package until you have been allocated one. Once you have been allocated one you must either make
the package depend on a version of the base-passwd package with the id present in /etc/passwd or /etc/group,
or arrange for your package to create the user or group itself with the correct id (using adduser) in its preinst or
postinst. (Doing it in the postinst is to be preferred if it is possible, otherwise a pre-dependency will be needed on
the adduser package.)

On the other hand, the program might be able to determine the uid or gid from the user or group name at runtime, so
that a dynamically allocated id can be used. In this case you should choose an appropriate user or group name, discussing
this on debian-devel and checking that it is unique. When this has been checked you must arrange for your package
to create the user or group if necessary using adduser in the preinst or postinst script (again, the latter is to be
preferred if it is possible).

Note that changing the numeric value of an id associated with a name is very difficult, and involves searching the file
system for all appropriate files. You need to think carefully whether a static or dynamic id is required, since changing
your mind later will cause problems.

10.9.1 The use of dpkg-statoverride

This section is not intended as policy, but as a description of the use of dpkg-statoverride.

If a system administrator wishes to have a file (or directory or other such thing) installed with owner and permissions
different from those in the distributed Debian package, they can use the dpkg-statoverride program to instruct dpkg
to use the different settings every time the file is installed. Thus the package maintainer should distribute the files with
their normal permissions, and leave it for the system administrator to make any desired changes. For example, a daemon
which is normally required to be setuid root, but in certain situations could be used without being setuid, should be
installed setuid in the .deb. Then the local system administrator can change this if they wish. If there are two standard
ways of doing it, the package maintainer can use debconf to find out the preference, and call dpkg-statoverride in
the maintainer script if necessary to accommodate the system administrator’s choice. Care must be taken during upgrades
to not override an existing setting.

Given the above, dpkg-statoverride is essentially a tool for system administrators and would not normally be needed
in the maintainer scripts. There is one type of situation, though, where calls to dpkg-statoverridewould be needed in
the maintainer scripts, and that involves packages which use dynamically allocated user or group ids. In such a situation,
something like the following idiom can be very helpful in the package’s postinst, where sysuser is a dynamically
allocated id:

for i in /usr/bin/foo /usr/sbin/bar; do

only do something when no setting exists

if ! dpkg-statoverride --list $i >/dev/null 2>&1; then

#include: debconf processing, question about foo and bar

if ["$RET" = "true"] ; then

dpkg-statoverride --update --add sysuser root 4755 $i

fi

fi

done

The corresponding code to remove the override when the package is purged would be:

for i in /usr/bin/foo /usr/sbin/bar; do

if dpkg-statoverride --list $i >/dev/null 2>&1; then

dpkg-statoverride --remove $i

fi

done

10.9. Permissions and owners 97

Debian Policy Manual, Release 4.7.0.2

10.10 File names

The name of the files installed by binary packages in the system PATH (namely /bin, /sbin, /usr/bin, /usr/sbin
and /usr/games) must be encoded in ASCII.

The name of the files and directories installed by binary packages outside the system PATH must be encoded in UTF-8
and should be restricted to ASCII when it is possible to do so.

98 Chapter 10. Files

CHAPTER

ELEVEN

CUSTOMIZED PROGRAMS

11.1 Architecture specification strings

If a program needs to specify an architecture specification string in some place, it should select one of the strings provided
by dpkg-architecture -L. The strings are in the format os-arch, though the OS part is sometimes elided, as when
the OS is Linux.

Note that we don’t want to use arch-debian-linux to apply to the rule architecture-vendor-os since
this would make our programs incompatible with other Linux distributions. We also don’t use something like
arch-unknown-linux, since the unknown does not look very good.

11.1.1 Architecture wildcards

A package may specify an architecture wildcard. Architecture wildcards are in the format any (which matches every
architecture), os-any, or any-cpu.1

11.2 Daemons

The configuration files /etc/services, /etc/protocols, and /etc/rpc are managed by the netbase package and
must not be modified by other packages.

If a package requires a new entry in one of these files, the maintainer should get in contact with the netbasemaintainer,
who will add the entries and release a new version of the netbase package.

The configuration file /etc/inetd.confmust not be modified by the package’s scripts except via the update-inetd
script or the DebianNet.pm Perl module. See their documentation for details on how to add entries.

If a package wants to install an example entry into /etc/inetd.conf, the entry must be preceded with exactly one
hash character (#). Such lines are treated as “commented out by user” by the update-inetd script and are not changed
or activated during package updates.

11.3 Using pseudo-ttys and modifying wtmp, utmp and lastlog

Some programs need to create pseudo-ttys. This should be done using Unix98 ptys if the C library supports it. The
resulting program must not be installed setuid root, unless that is required for other functionality.

The files /var/run/utmp, /var/log/wtmp and /var/log/lastlogmust be installed writable by group utmp. Pro-
grams which need to modify those files must be installed setgid utmp.

1 Internally, the package system normalizes the GNU triplets and the Debian arches into Debian arch triplets (which are kind of inverted GNU
triplets), with the first component of the triplet representing the libc and ABI in use, and then does matching against those triplets. However, such
triplets are an internal implementation detail that should not be used by packages directly. The libc and ABI portion is handled internally by the package
system based on the os and cpu.

99

Debian Policy Manual, Release 4.7.0.2

11.4 Editors and pagers

Some programs have the ability to launch an editor or pager program to edit or display a text document. Since there are
lots of different editors and pagers available in the Debian distribution, the system administrator and each user should
have the possibility to choose their preferred editor and pager.

In addition, every program should choose a good default editor/pager if none is selected by the user or system adminis-
trator.

Thus, every program that launches an editor or pager must use the EDITOR or PAGER environment variable to determine
the editor or pager the user wishes to use. If these variables are not set, the programs /usr/bin/editor and /usr/
bin/pager should be used, respectively. These commands may be invoked explicitly (e.g., as /usr/bin/editor) or
via a PATH search (e.g., as editor).

These two files are managed through the dpkg “alternatives” mechanism. Every package providing an editor or pager
must call the update-alternatives script to register as an alternative for /usr/bin/editor or /usr/bin/pager
as appropriate. The alternative should have a slave alternative for /usr/share/man/man1/editor.1.gz or /usr/
share/man/man1/pager.1.gz pointing to the corresponding manual page.

If it is very hard to adapt a program to make use of the EDITOR or PAGER variables, that program may be configured
to use /usr/bin/sensible-editor and /usr/bin/sensible-pager as the editor or pager program respectively.
These are two scripts provided in the sensible-utils package that check the EDITOR and PAGER variables and launch
the appropriate program, and fall back to /usr/bin/editor and /usr/bin/pager if the variable is not set.

A program may also use the VISUAL environment variable to determine the user’s choice of editor. If it exists, it should
take precedence over EDITOR. This is in fact what /usr/bin/sensible-editor does.

It is not required for a package to depend on editor and pager, nor is it required for a package to provide such virtual
packages.2

11.5 Web servers and applications

This section describes the locations and URLs that should be used by all web servers and web applications in the Debian
system.

1. Cgi-bin executable files are installed in the directory

/usr/lib/cgi-bin

or a subdirectory of that directory, and the script

/usr/lib/cgi-bin/.../cgi-bin-name

should be referred to as

http://localhost/cgi-bin/.../cgi-bin-name

2. (Deleted)

3. Access to images

Images for a package should be stored in /usr/share/images/package and referred to through an alias /
images/ as:

http://localhost/images/package/filename

2 The Debian base system already provides an editor and a pager program.

100 Chapter 11. Customized programs

Debian Policy Manual, Release 4.7.0.2

4. Web Document Root

Web Applications should try to avoid storing files in the Web Document Root. Instead they should use the
/usr/share/doc/package directory for documents. If access to the web document root is unavoidable then use

/var/www/html

as the Document Root. This might be just a symbolic link to the location where the system administrator has put
the real document root.

5. Providing httpd and/or httpd-cgi

All web servers should provide the virtual package httpd. If a web server has CGI support it should provide
httpd-cgi additionally.

All web applications which do not contain CGI scripts should depend on httpd, all those web applications which
do contain CGI scripts, should depend on httpd-cgi.

11.6 Mail transport, delivery and user agents

Debian packages which process electronic mail, whether mail user agents (MUAs) or mail transport agents (MTAs), must
ensure that they are compatible with the configuration decisions below. Failure to do this may result in lost mail, broken
From: lines, and other serious brain damage!

The mail spool is /var/mail and the interface to send a mail message is /usr/sbin/sendmail (as per the FHS). On
older systems, the mail spool may be physically located in /var/spool/mail, but all access to the mail spool should
be via the /var/mail symlink. The mail spool is part of the base system and not part of the MTA package.

All DebianMUAs, MTAs, MDAs and other mailbox accessing programs (such as IMAP daemons) must lock the mailbox
in an NFS-safe way. This means that fcntl() locking must be combined with dot locking. To avoid deadlocks, a
program should use fcntl() first and dot locking after this, or alternatively implement the two locking methods in a
non blocking way.3 Using the functions maillock and mailunlock provided by the liblockfile* packages is the
recommended way to accomplish this.

Mailboxes are generally either mode 600 and owned by user or mode 660 and owned by user:mail.4 The local system
administrator may choose a different permission scheme; packages should not make assumptions about the permission
and ownership of mailboxes unless required (such as when creating a new mailbox). A MUA may remove a mailbox
(unless it has nonstandard permissions) in which case the MTA or another MUA must recreate it if needed.

The mail spool is 2775 root:mail, and MUAs should be setgid mail to do the locking mentioned above (and must
obviously avoid accessing other users’ mailboxes using this privilege).

/etc/aliases is the source file for the system mail aliases (e.g., postmaster, usenet, etc.), it is the one which the
sysadmin and postinst scripts may edit. After /etc/aliases is edited the program or human editing it must call
newaliases. All MTA packages must come with a newaliases program, even if it does nothing, but older MTA
packages did not do this so programs should not fail if newaliases cannot be found. Note that because of this, all MTA
packages must have Provides, Conflicts and Replaces: mail-transport-agent control fields.

The convention of writing forward to address in the mailbox itself is not supported. Use a .forward file instead.

The rmail program used by UUCP for incoming mail should be /usr/sbin/rmail. Likewise, rsmtp, for receiving
batch-SMTP-over-UUCP, should be /usr/sbin/rsmtp if it is supported.

3 If it is not possible to establish both locks, the system shouldn’t wait for the second lock to be established, but remove the first lock, wait a (random)
time, and start over locking again.

4 There are two traditional permission schemes for mail spools: mode 600 with all mail delivery done by processes running as the destination user,
or mode 660 and owned by group mail with mail delivery done by a process running as a system user in group mail. Historically, Debian required mode
660 mail spools to enable the latter model, but that model has become increasingly uncommon and the principle of least privilege indicates that mail
systems that use the first model should use permissions of 600. If delivery to programs is permitted, it’s easier to keep the mail system secure if the
delivery agent runs as the destination user. Debian Policy therefore permits either scheme.

11.6. Mail transport, delivery and user agents 101

Debian Policy Manual, Release 4.7.0.2

If your package needs to know what hostname to use on (for example) outgoing news and mail messages which are
generated locally, you should use the file /etc/mailname. It will contain the portion after the username and @ (at) sign
for email addresses of users on the machine (followed by a newline).

Such a package should check for the existence of this file when it is being configured. If it exists, it should be used
without comment, although an MTA’s configuration script may wish to prompt the user even if it finds that this file exists.
If the file does not exist, the package should prompt the user for the value (preferably using debconf) and store it in
/etc/mailname as well as using it in the package’s configuration. The prompt should make it clear that the name will
not just be used by that package. For example, in this situation the inn package could say something like:

Please enter the "mail name" of your system. This is the hostname portion

of the address to be shown on outgoing news and mail messages. The

default is syshostname, your system's host name.

Mail name ["syshostname"]:

where syshostname is the output of hostname --fqdn.

11.7 News system configuration

All the configuration files related to the NNTP (news) servers and clients should be located under /etc/news.

There are some configuration issues that apply to a number of news clients and server packages on the machine. These
are:

/etc/news/organization

A string which should appear as the organization header for all messages posted by NNTP clients on the machine

/etc/news/server

Contains the FQDN of the upstream NNTP server, or localhost if the local machine is an NNTP server.

Other global files may be added as required for cross-package news configuration.

11.8 Programs for the X Window System

11.8.1 Providing X support and package priorities

Programs that can be configured with support for the X Window System must be configured to do so and must declare
any package dependencies necessary to satisfy their runtime requirements when using the X Window System. If such a
package is of higher priority than the X packages on which it depends, it is required that either the X-specific components
be split into a separate package, or that an alternative version of the package, which includes X support, be provided, or
that the package’s priority be lowered.

11.8.2 Packages providing an X server

Packages that provide an X server that, directly or indirectly, communicates with real input and display hardware should
declare in their Provides control field that they provide the virtual package xserver.5

5 This implements current practice, and provides an actual policy for usage of the xserver virtual package which appears in the virtual packages
list. In a nutshell, X servers that interface directly with the display and input hardware or via another subsystem (e.g., GGI) should provide xserver.
Things like Xvfb, Xnest, and Xprt should not.

102 Chapter 11. Customized programs

Debian Policy Manual, Release 4.7.0.2

11.8.3 Packages providing a terminal emulator

Packages that provide a terminal emulator for the X Window System which meet the criteria listed below should declare
in their Provides control field that they provide the virtual package x-terminal-emulator. They should also register
themselves as an alternative for /usr/bin/x-terminal-emulator, with a priority of 20. That alternative should have
a slave alternative for /usr/share/man/man1/x-terminal-emulator.1.gz pointing to the corresponding manual
page.

To be an x-terminal-emulator, a program must:

• Be able to emulate a DEC VT100 terminal, or a compatible terminal.

• Support the command-line option -e command, which creates a new terminal window6 and runs the specified
command. <command> may be multiple arguments, which form the argument list to the executed program. In
other words, the behavior is as though the arguments were passed directly to execvp, bypassing the shell. (xterm’s
behavior of falling back on using the shell if -e had a single argument and exec failed is permissible but not
required.)

• Support the command-line option -T title, which creates a new terminal window with the window title title.

11.8.4 Packages providing a window manager

Packages that provide a windowmanager should declare in their Provides control field that they provide the virtual pack-
age x-window-manager. They should also register themselves as an alternative for /usr/bin/x-window-manager,
with a priority calculated as follows:

• Start with a priority of 40.

• If the window manager complies with The Window Manager Specification Project, written by the Free Desktop
Group, add 40 points.

• If the window manager permits the X session to be restarted using a different window manager (without killing the
X server) in its default configuration, add 10 points; otherwise add none.

That alternative should have a slave alternative for /usr/share/man/man1/x-window-manager.1.gz pointing to
the corresponding manual page.

11.8.5 Packages providing fonts

Packages that provide fonts for the X Window System7 must do a number of things to ensure that they are both available
without modification of the X or font server configuration, and that they do not corrupt files used by other font packages
to register information about themselves.

1. Fonts of any type supported by the X Window System must be in a separate binary package from any executables,
libraries, or documentation (except that specific to the fonts shipped, such as their license information). If one or
more of the fonts so packaged are necessary for proper operation of the package with which they are associated
the font package may be Recommended; if the fonts merely provide an enhancement, a Suggests relationship may
be used. Packages must not Depend on font packages.8

2. BDF fonts must be converted to PCF fonts with the bdftopcf utility (available in the xfonts-utils package,
gzipped, and placed in a directory that corresponds to their resolution:

• 100 dpi fonts must be placed in /usr/share/fonts/X11/100dpi/.

6 “New terminal window” does not necessarily mean a new top-level X window directly parented by the window manager; it could, if the terminal
emulator application were so coded, be a new “view” in a multiple-document interface (MDI).

7 For the purposes of Debian Policy, a “font for the X Window System” is one which is accessed via X protocol requests. Fonts for the Linux
console, for PostScript renderer, or any other purpose, do not fit this definition. Any tool which makes such fonts available to the X Window System,
however, must abide by this font policy.

8 This is because an X client may be displayed by a remote X server, in which case X fonts are provided by the remote X server, not retrieved
locally; the Debian package system is empowered to deal only with the local file system.

11.8. Programs for the X Window System 103

https://www.freedesktop.org/wiki/Specifications/wm-spec
https://www.freedesktop.org/wiki/
https://www.freedesktop.org/wiki/

Debian Policy Manual, Release 4.7.0.2

• 75 dpi fonts must be placed in /usr/share/fonts/X11/75dpi/.

• Character-cell fonts, cursor fonts, and other low-resolution fonts must be placed in /usr/share/fonts/
X11/misc/.

3. Type 1 fonts must be placed in /usr/share/fonts/X11/Type1/. If font metric files are available, they must
be placed here as well.

4. Subdirectories of /usr/share/fonts/X11/ other than those listed abovemust be neither created nor used. (The
PEX, CID, Speedo, and cyrillic directories are excepted for historical reasons, but installation of files into these
directories remains discouraged.)

5. Font packages may, instead of placing files directly in the X font directories listed above, provide symbolic links
in that font directory pointing to the files’ actual location in the filesystem. Such a location must comply with the
FHS.

6. Font packages should not contain both 75dpi and 100dpi versions of a font. If both are available, they should be
provided in separate binary packages with -75dpi or -100dpi appended to the names of the packages containing
the corresponding fonts.

7. Fonts destined for the misc subdirectory should not be included in the same package as 75dpi or 100dpi fonts;
instead, they should be provided in a separate package with -misc appended to its name.

8. Font packages must not provide the files fonts.dir, fonts.alias, or fonts.scale in a font directory:

• fonts.dir files must not be provided at all.

• fonts.alias and fonts.scale files, if needed, should be provided in the directory /etc/X11/fonts/
fontdir/package.extension, where fontdir is the name of the subdirectory of /usr/share/fonts/
X11/ where the package’s corresponding fonts are stored (e.g., 75dpi or misc), package is the name of the
package that provides these fonts, and extension is either scale or alias, whichever corresponds to the file
contents.

9. Font packages must declare a dependency on xfonts-utils in their Depends or Pre-Depends control field.

10. Font packages that provide one or more fonts.scale files as described above must invoke
update-fonts-scale on each directory into which they installed fonts before invoking update-fonts-dir
on that directory. This invocation must occur in both the postinst (for all arguments) and postrm (for all
arguments except upgrade) scripts.

11. Font packages that provide one or more fonts.alias files as described above must invoke
update-fonts-alias on each directory into which they installed fonts. This invocation must occur in
both the postinst (for all arguments) and postrm (for all arguments except upgrade) scripts.

12. Font packages must invoke update-fonts-dir on each directory into which they installed fonts. This invocation
must occur in both the postinst (for all arguments) and postrm (for all arguments except upgrade) scripts.

13. Font packages must not provide alias names for the fonts they include which collide with alias names already in use
by fonts already packaged.

14. Font packages must not provide fonts with the same XLFD registry name as another font already packaged.

11.8.6 Application defaults files

Application defaults files must be installed in the directory /etc/X11/app-defaults/ (use of a localized subdirectory
of /etc/X11/ as described in the X Toolkit Intrinsics - C Language Interface manual is also permitted). They must be
registered as conffiles or handled as configuration files.

Customization of programs’ X resources may also be supported with the provision of a file with the same name as that of
the package placed in the /etc/X11/Xresources/ directory, which must be registered as a conffile or handled as
a configuration file.9

9 Note that this mechanism is not the same as using app-defaults; app-defaults are tied to the client binary on the local file system, whereas X

104 Chapter 11. Customized programs

Debian Policy Manual, Release 4.7.0.2

11.8.7 Installation directory issues

Historically, packages using the X Window System used a separate set of installation directories from other packages.
This practice has been discontinued and packages using the X Window System should now generally be installed in the
same directories as any other package. Specifically, packages must not install files under the /usr/X11R6/ directory
and the /usr/X11R6/ directory hierarchy should be regarded as obsolete.

Include files previously installed under /usr/X11R6/include/X11/ should be installed into /usr/include/X11/.
For files previously installed into subdirectories of /usr/X11R6/lib/X11/, package maintainers should determine if
subdirectories of /usr/lib/ and /usr/share/ can be used. If not, a subdirectory of /usr/lib/X11/ should be
used.

Configuration files for window, display, or session managers or other applications that are tightly integrated with the X
Window System may be placed in a subdirectory of /etc/X11/ corresponding to the package name. Other X Window
System applications should use the /etc/ directory unless otherwise mandated by policy (such as for Application defaults
files).

11.9 Perl programs and modules

Perl programs and modules should follow the current Perl policy.

The Perl policy can be found in the perl-policy files in the debian-policy package. It is also available from the
Debian web mirrors at https://www.debian.org/doc/packaging-manuals/perl-policy/.

11.10 Emacs lisp programs

Please refer to the “Debian Emacs Policy” for details of how to package emacs lisp programs.

The Emacs policy is available in debian-emacs-policy.gz of the emacsen-common package. It is also available
from the Debian web mirrors at https://www.debian.org/doc/packaging-manuals/debian-emacs-policy.

11.11 Games

The permissions on /var/games are mode 755, owner root and group root.

Each game decides on its own security policy.

Games which require protected, privileged access to high-score files, saved games, etc., may be made set-group-id (mode
2755) and owned by root:games, and use files and directories with appropriate permissions (770 root:games, for
example). They must not be made set-user-id, as this causes security problems. (If an attacker can subvert any set-user-id
game they can overwrite the executable of any other, causing other players of these games to run a Trojan horse program.
With a set-group-id game the attacker only gets access to less important game data, and if they can get at the other players’
accounts at all it will take considerably more effort.)

Some packages, for example some fortune cookie programs, are configured by the upstream authors to install with their
data files or other static information made unreadable so that they can only be accessed through set-id programs provided.
You should not do this in a Debian package: anyone can download the .deb file and read the data from it, so there is
no point making the files unreadable. Not making the files unreadable also means that you don’t have to make so many
programs set-id, which reduces the risk of a security hole.

As described in the FHS, binaries of games should be installed in the directory /usr/games. This also applies to games
that use the X Window System. Manual pages for games (X and non-X games) should be installed in /usr/share/
man/man6.

resources are stored in the X server and affect all connecting clients.

11.9. Perl programs and modules 105

https://www.debian.org/doc/packaging-manuals/perl-policy/
https://www.debian.org/doc/packaging-manuals/debian-emacs-policy

Debian Policy Manual, Release 4.7.0.2

106 Chapter 11. Customized programs

CHAPTER

TWELVE

DOCUMENTATION

12.1 Manual pages

You should install manual pages in nroff source form, in appropriate places under /usr/share/man. You should only
use sections 1 to 9 (see the FHS for more details). You must not install a pre-formatted “cat page”.

Each program, utility, and function should have an associated manual page included in the same package or a dependency.
It is suggested that all configuration files also have a manual page included as well. Manual pages for protocols and other
auxiliary things are optional.

If no manual page is available, this is considered as a bug and should be reported to the Debian Bug Tracking System (the
maintainer of the package is allowed to write this bug report themselves, if they so desire). Do not close the bug report
until a proper man page is available.1

You may forward a complaint about a missing man page to the upstream authors, and mark the bug as forwarded in the
Debian bug tracking system. Even though the GNU Project do not in general consider the lack of a man page to be a bug,
we do; if they tell you that they don’t consider it a bug you should leave the bug in our bug tracking system open anyway.

Manual pages should be installed compressed using gzip -9.

If one man page needs to be accessible via several names it is better to use a symbolic link than the .so feature, but there
is no need to fiddle with the relevant parts of the upstream source to change from .so to symlinks: don’t do it unless it’s
easy. You should not create hard links in the manual page directories, nor put absolute filenames in .so directives. The
filename in a .so in a man page should be relative to the base of the man page tree (usually /usr/share/man). If you
do not create any links (whether symlinks, hard links, or .so directives) in the file system to the alternate names of the
man page, then you should not rely on man finding your man page under those names based solely on the information in
the man page’s header.2

Manual pages in locale-specific subdirectories of /usr/share/man should use either UTF-8 or the usual legacy en-
coding for that language (normally the one corresponding to the shortest relevant locale name in /usr/share/i18n/
SUPPORTED). For example, pages under /usr/share/man/fr should use either UTF-8 or ISO-8859-1.3

A country name (the DE in de_DE) should not be included in the subdirectory name unless it indicates a significant
difference in the language, as this excludes speakers of the language in other countries.4

If a localized version of a manual page is provided, it should either be up-to-date or it should be obvious to the reader that
it is outdated and the original manual page should be used instead. This can be done either by a note at the beginning of
the manual page or by showing the missing or changed portions in the original language instead of the target language.

1 It is not very hard to write a man page. See the Man-Page-HOWTO, man(7), the examples created by dh_make, the helper program help2man,
or the directory /usr/share/doc/man-db/examples.

2 Supporting this in man often requires unreasonable processing time to find a manual page or to report that none exists, and moves knowledge into
man’s database that would be better left in the file system. This support is therefore deprecated and will cease to be present in the future.

3 man will automatically detect whether UTF-8 is in use. In future, all manual pages will be required to use UTF-8.
4 At the time of writing, Chinese and Portuguese are the main languages with such differences, so pt_BR, zh_CN, and zh_TW are all allowed.

107

http://www.schweikhardt.net/man_page_howto.html

Debian Policy Manual, Release 4.7.0.2

12.2 Info documents

Info documents should be installed in /usr/share/info. They should be compressed with gzip -9.

The install-info program maintains a directory of installed info documents in /usr/share/info/dir for the use
of info readers. This file must not be included in packages other than install-info.

install-info is automatically invoked when appropriate using dpkg triggers. Packages other than install-info should
not invoke install-info directly and should not depend on, recommend, or suggest install-info for this purpose.

Info readers requiring the /usr/share/info/dir file should depend on install-info.

Info documents should contain section and directory entry information in the document for the use of install-info.
The section should be specified via a line starting with INFO-DIR-SECTION followed by a space and the section of
this info page. The directory entry or entries should be included between a START-INFO-DIR-ENTRY line and an
END-INFO-DIR-ENTRY line. For example:

INFO-DIR-SECTION Individual utilities

START-INFO-DIR-ENTRY

* example: (example). An example info directory entry.

END-INFO-DIR-ENTRY

To determine which section to use, you should look at /usr/share/info/dir on your system and choose the most
relevant (or create a new section if none of the current sections are relevant).5

12.3 Additional documentation

Any additional documentation that comes with the package may be installed at the discretion of the package maintainer.
It is often a good idea to include text information files (READMEs, FAQs, and so forth) that come with the source package
in the binary package. However, you don’t need to install the instructions for building and installing the package, of
course!

Plain text documentation should be compressed with gzip -9 unless it is small.

If a package comes with large amounts of documentation that many users of the package will not require, you should create
a separate binary package to contain it so that it does not take up disk space on the machines of users who do not need
or want it installed. As a special case of this rule, shared library documentation of any appreciable size should always be
packaged with the library development package (Development files) or in a separate documentation package, since shared
libraries are frequently installed as dependencies of other packages by users who have little interest in documentation
of the library itself. The documentation package for the package package is conventionally named package-doc (or
package-doc-language-code if there are separate documentation packages for multiple languages).

If package is a build tool, development tool, command-line tool, or library development package, package (or package-
dev in the case of a library development package) already provides documentation in man, info, or plain text format, and
package-doc provides HTML or other formats, package should declare at most a Suggests on package-doc. Otherwise,
package should declare at most a Recommends on package-doc.

Additional documentation included in the package should be installed under /usr/share/doc/package. If the doc-
umentation is packaged separately, as package-doc for example, it may be installed under either that path or into the
documentation directory for the separate documentation package (/usr/share/doc/package-doc in this example).

5 Normally, info documents are generated from Texinfo source. To include this information in the generated info document, if it is absent, add
commands like:

@dircategory Individual utilities

@direntry

* example: (example). An example info directory entry.

@end direntry

to the Texinfo source of the document and ensure that the info documents are rebuilt from source during the package build.

108 Chapter 12. Documentation

Debian Policy Manual, Release 4.7.0.2

However, installing the documentation into the documentation directory of the main package is encouraged since it is
independent of the packaging method and will be easier for users to find.

Any separate package providing documentation must still install standard documentation files in its own /usr/share/
doc directory as specified in the rest of this policy. See, for example, Copyright information and Changelog files and
release notes.

Packages must not require the existence of any files in /usr/share/doc/ in order to function.6 Any files that are
used or read by programs but are also useful as stand alone documentation should be installed elsewhere, such as under
/usr/share/package/, and then included via symbolic links in /usr/share/doc/package.

/usr/share/doc/package is permitted to be a symbolic link to another directory in /usr/share/doc only if the
two packages both come from the same source and the first package Depends on the second. Otherwise, /usr/share/
doc/package must not be a symbolic link.7

12.4 Preferred documentation formats

The unification of Debian documentation is being carried out via HTML.

If the package comes with extensive documentation in a markup format that can be converted to various other formats
you should if possible ship HTML versions in a binary package.8 The documentation must be installed as specified in
Additional documentation.

Other formats such as PostScript may be provided at the package maintainer’s discretion.

12.5 Copyright information

Every package must be accompanied by a verbatim copy of its distribution license(s) in the file /usr/share/doc/
PACKAGE/copyright. This file must neither be compressed nor be a symbolic link.

A verbatim copy of the package’s copyright information is often required to be present in /usr/share/doc/PACKAGE/
copyright, too; see Copyright considerations.

In addition, the copyright file must say where the upstream sources (if any) were obtained, and should include a name or
contact address for the upstream authors. This can be the name of an individual or an organization, an email address, a
web forum or bugtracker, or any other means to unambiguously identify who to contact to participate in the development
of the upstream source code.

Packages in the contrib or non-free archive areas should state in the copyright file that the package is not part of the
Debian distribution and briefly explain why.

A copy of the file which will be installed in /usr/share/doc/PACKAGE/copyright should be in debian/

copyright in the source package.

/usr/share/doc/package is permitted be a symbolic link to another directory in /usr/share/doc only if the two
packages both come from the same source and the first package Depends on the second. Otherwise, /usr/share/
doc/package must not be a symbolic link. These rules are important because copyright files must be extractable by
mechanical means.

Packages distributed under the Apache license (version 2.0), the Artistic license, the Creative Commons CC0-1.0 li-
cense, the GNU GPL (versions 1, 2, or 3), the GNU LGPL (versions 2, 2.1, or 3), the GNU FDL (versions 1.2 or

6 The system administrator should be able to delete files in /usr/share/doc/ without causing any programs to break.
7 Please note that this does not override the section on changelog files below, so the file /usr/share/doc/package/changelog.Debian.gz

must refer to the changelog for the current version of package in question. In practice, this means that the sources of the target and the destination of
the symlink must be the same (same source package and version).

8 Rationale: The important thing here is that HTML documentation should be available from some binary package.

12.4. Preferred documentation formats 109

Debian Policy Manual, Release 4.7.0.2

1.3), and the Mozilla Public License (version 1.1 or 2.0) should refer to the corresponding files under /usr/share/
common-licenses,9 rather than quoting them in the copyright file.

You should not use the copyright file as a general README file. If your package has such a file it should be installed in
/usr/share/doc/package/README or README.Debian or some other appropriate place.

All copyright files must be encoded in UTF-8.

12.5.1 Machine-readable copyright information

A specification for a standard, machine-readable format for debian/copyright files is maintained as part of the debian-
policy package. This document is in the copyright-format files in the debian-policy package. It is also available from
the Debian web mirrors at https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/.

Use of this format is optional.

12.6 Examples

Any examples (configurations, source files, whatever), should be installed in a directory /usr/share/doc/package/
examples. These files should not be referenced by any program: they’re there for the benefit of the system administrator
and users as documentation only. Architecture-specific example files should be installed in a directory /usr/lib/

package/exampleswith symbolic links to them from /usr/share/doc/package/examples, or the latter directory
itself may be a symbolic link to the former.

If the purpose of a package is to provide examples, then the example files may be installed into /usr/share/doc/

package.

12.7 Changelog files and release notes

Packages that are not Debian-native must contain a compressed copy of the debian/changelog file from the Debian
source tree in /usr/share/doc/package with the name changelog.Debian.gz.

If an upstream release notes file is available, containing a summary of changes between upstream releases intended for
end users of the package and often called NEWS, it should be accessible as /usr/share/doc/package/NEWS.gz. An
older practice of installing the upstream release notes as /usr/share/doc/package/changelog.gz is permitted but
deprecated.

If there is an upstream changelog available, it may be made available as /usr/share/doc/package/changelog.gz.

If either of these files are distributed in HTML, they should be made available at /usr/share/doc/package/NEWS.
html.gz and /usr/share/doc/package/changelog.html.gz respectively, and plain text versions NEWS.gz and
changelog.gz should be generated from them, using, for example, lynx -dump -nolist.

If the upstream release notes or changelog do not already conform to this naming convention, then this may be achieved
either by renaming the files, or by adding a symbolic link, at the maintainer’s discretion.10

All of these files should be installed compressed using gzip -9, as they will become large with time even if they start
out small.

9 In particular, /usr/share/common-licenses/Apache-2.0, /usr/share/common-licenses/Artistic, /usr/share/

common-licenses/CC0-1.0, /usr/share/common-licenses/GPL-1, /usr/share/common-licenses/GPL-2, /usr/share/

common-licenses/GPL-3, /usr/share/common-licenses/LGPL-2, /usr/share/common-licenses/LGPL-2.1, /usr/share/

common-licenses/LGPL-3, /usr/share/common-licenses/GFDL-1.2, /usr/share/common-licenses/GFDL-1.3, /usr/share/

common-licenses/MPL-1.1, and /usr/share/common-licenses/MPL-2.0 respectively. The University of California BSD license is also
included in base-files as /usr/share/common-licenses/BSD, but given the brevity of this license, its specificity to code whose copyright is held
by the Regents of the University of California, and the frequency of minor wording changes, its text should be included in the copyright file rather than
referencing this file.

10 Rationale: People should not have to look in places for upstream changelogs merely because they are given different names or are distributed in
HTML format.

110 Chapter 12. Documentation

https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

Debian Policy Manual, Release 4.7.0.2

If the package has only one file which is used both as the Debian changelog and the upstream release notes or changelog,
because there is no separate upstream maintainer, then that file should usually be installed as /usr/share/doc/
package/NEWS.gz or /usr/share/doc/package/changelog.gz (depending on whether the file is release notes
or a changelog); if there is a separate upstream maintainer, but no upstream release notes or changelog, then the Debian
changelog should still be called changelog.Debian.gz.

For details about the format and contents of the Debian changelog file, please see Debian changelog: debian/changelog.

12.7. Changelog files and release notes 111

Debian Policy Manual, Release 4.7.0.2

112 Chapter 12. Documentation

CHAPTER

THIRTEEN

INTRODUCTION AND SCOPE OF THESE APPENDICES

These appendices, except the final three, are taken essentially verbatim from the now-deprecated Packaging Manual,
version 3.2.1.0. They are the chapters which are likely to be of use to package maintainers and which have not already
been included in the policy document itself. Most of these sections are very likely not relevant to policy; they should
be treated as documentation for the packaging system. Please note that these appendices are included for convenience,
and for historical reasons: they used to be part of policy package, and they have not yet been incorporated into dpkg
documentation. However, they still have value, and hence they are presented here.

They have not yet been checked to ensure that they are compatible with the contents of policy, and if there are any
contradictions, the version in the main policy document takes precedence. The remaining chapters of the old Packaging
Manual have also not been read in detail to ensure that there are not parts which have been left out. Both of these will be
done in due course.

Certain parts of the Packaging manual were integrated into the Policy Manual proper, and removed from the appendices.
Links have been placed from the old locations to the new ones.

dpkg is a suite of programs for creating binary package files and installing and removing them on Unix systems.1

The binary packages are designed for the management of installed executable programs (usually compiled binaries) and
their associated data, though source code examples and documentation are provided as part of some packages.

This manual describes the technical aspects of creating Debian binary packages (.deb files). It documents the behavior
of the package management programs dpkg, dselect et al. and the way they interact with packages.

This manual does not go into detail about the options and usage of the package building and installation tools. It should
therefore be read in conjunction with those programs’ man pages.

The utility programs which are provided with dpkg not described in detail here, are documented in their man pages.

It is assumed that the reader is reasonably familiar with the dpkg System Administrators’ manual. Unfortunately this
manual does not yet exist.

The Debian version of the FSF’s GNU hello program is provided as an example for people wishing to create Debian
packages. However, while the examples are helpful, they do not replace the need to read and follow the Policy and
Programmer’s Manual.

1 dpkg is targeted primarily at Debian, but may work on or be ported to other systems.

113

Debian Policy Manual, Release 4.7.0.2

114 Chapter 13. Introduction and scope of these appendices

CHAPTER

FOURTEEN

BINARY PACKAGES (FROM OLD PACKAGING MANUAL)

See deb(5) and Binary package metadata files.

14.1 Creating package files - dpkg-deb

All manipulation of binary package files is done by dpkg-deb; it’s the only program that has knowledge of the format.
(dpkg-deb may be invoked by calling dpkg, as dpkg will spot that the options requested are appropriate to dpkg-deb
and invoke that instead with the same arguments.)

In order to create a binary package, you must make a directory tree which contains all the files and directories you want
to have in the file system data part of the package. In Debian-format source packages, this directory is usually either
debian/tmp or debian/pkg, relative to the top of the package’s source tree.

They should have the locations (relative to the root of the directory tree you’re constructing) ownerships and permissions
which you want them to have on the system when they are installed.

With current versions of dpkg the uid/username and gid/groupname mappings for the users and groups being used should
be the same on the system where the package is built and the one where it is installed.

You need to add one special directory to the root of the miniature file system tree you’re creating: DEBIAN. It should
contain the control information files, notably the binary package control file (see The binary package control file: control).

The DEBIAN directory will not appear in the file system archive of the package, and so won’t be installed by dpkg when
the package is unpacked.

When you’ve prepared the package, you should invoke:

dpkg --build directory

This will build the package in directory.deb. (dpkg knows that --build is a dpkg-deb option, so it invokes
dpkg-deb with the same arguments to build the package.)

See the dpkg-deb(8) man page for details of how to examine the contents of this newly-created file. You may find the
output of following commands enlightening:

dpkg-deb --info filename.deb

dpkg-deb --contents filename.deb

dpkg --contents filename.deb

To view the copyright file for a package you could use this command:

dpkg --fsys-tarfile filename.deb | tar xOf - --wildcards */copyright | pager

115

Debian Policy Manual, Release 4.7.0.2

14.2 Binary package metadata files

The package metadata portion of a binary package is a collection of files with names known to dpkg. It will treat the
contents of these files specially - some of them contain information used by dpkgwhen installing or removing the package;
others are scripts which the package maintainer wants dpkg to run.

It is possible to put other files in the package metadata archive member, but this is not generally a good idea (though they
will largely be ignored).

Here is a brief list of the package metadata files supported by dpkg and a summary of what they’re used for.

control

This is the key description file used by dpkg. It specifies the package’s name and version, gives its description for
the user, states its relationships with other packages, and so forth. See Debian source package template control files
– debian/control and Debian binary package control files – DEBIAN/control.

It is usually generated automatically from information in the source package by the dpkg-gencontrol program,
and with assistance from dpkg-shlibdeps. See Source packages (from old Packaging Manual).

postinst, preinst, postrm, prerm
These are executable files (usually scripts) which dpkg runs during installation, upgrade and removal of packages.
They allow the package to deal with matters which are particular to that package or require more complicated
processing than that provided by dpkg. Details of when and how they are called are in Package maintainer scripts
and installation procedure.

It is very important to make these scripts idempotent. See Maintainer scripts idempotency.

The maintainer scripts are not guaranteed to run with a controlling terminal and may not be able to interact with
the user. See Controlling terminal for maintainer scripts.

conffiles This file contains a list of configuration files which
are to be handled automatically by dpkg (see Configuration file handling (from old Packaging Manual)). Note that
not necessarily every configuration file should be listed here.

shlibs

This file contains a list of the shared libraries supplied by the package, with dependency details for each. This
is used by dpkg-shlibdeps when it determines what dependencies are required in a package control file. The
shlibs file format is described on The shlibs File Format.

14.3 The binary package control file: control

The most important package metadata file used by dpkg when it installs a package is control. It contains all the
package’s “vital statistics”.

The binary package control files of packages built from Debian sources are made by a special tool, dpkg-gencontrol,
which reads debian/control and debian/changelog to find the information it needs. See Source packages (from
old Packaging Manual) for more details.

The fields in binary package control files are listed in Debian binary package control files – DEBIAN/control.

A description of the syntax of control files and the purpose of the fields is available in Control files and their fields.

14.4 Time Stamps

See Time Stamps.

116 Chapter 14. Binary packages (from old Packaging Manual)

CHAPTER

FIFTEEN

SOURCE PACKAGES (FROM OLD PACKAGING MANUAL)

The Debian binary packages in the distribution are generated from Debian sources, which are in a special format to assist
the easy and automatic building of binaries.

15.1 Tools for processing source packages

Various tools are provided for manipulating source packages; they pack and unpack sources and help build of binary
packages and help manage the distribution of new versions.

They are introduced and typical uses described here; see dpkg-source(1) for full documentation about their arguments
and operation.

For examples of how to construct a Debian source package, and how to use those utilities that are used by Debian source
packages, please see the hello example package.

15.1.1 dpkg-source - packs and unpacks Debian source packages

This program is frequently used by hand, and is also called from package-independent automated building scripts such
as dpkg-buildpackage.

To unpack a package it is typically invoked with

dpkg-source -x .../path/to/filename.dsc

with the filename.tar.gz and filename.diff.gz (if applicable) in the same directory. It unpacks into
package-version, and if applicable package-version.orig, in the current directory.

To create a packed source archive it is typically invoked:

dpkg-source -b package-version

This will create the .dsc, .tar.gz and .diff.gz (if appropriate) in the current directory. dpkg-source does not
clean the source tree first - this must be done separately if it is required.

See also Source packages as archives.

15.1.2 dpkg-buildpackage - overall package-building control script

See dpkg-buildpackage(1).

117

Debian Policy Manual, Release 4.7.0.2

15.1.3 dpkg-gencontrol - generates binary package control files

This program is usually called from debian/rules (see section_title) in the top level of the source tree.

This is usually done just before the files and directories in the temporary directory tree where the package is being built
have their permissions and ownerships set and the package is constructed using dpkg-deb/.1

dpkg-gencontrolmust be called after all the files which are to go into the package have been placed in the temporary
build directory, so that its calculation of the installed size of a package is correct.

It is also necessary for dpkg-gencontrol to be run after dpkg-shlibdeps so that the variable substitutions created
by dpkg-shlibdeps in debian/substvars are available.

For a package which generates only one binary package, and which builds it in debian/tmp relative to the top of the
source package, it is usually sufficient to call dpkg-gencontrol.

Sources which build several binaries will typically need something like:

dpkg-gencontrol -Pdebian/pkg -ppackage

The -P tells dpkg-gencontrol that the package is being built in a non-default directory, and the -p tells it which binary
package’s control file should be generated.

dpkg-gencontrol also adds information to the list of files in debian/files, for the benefit of (for example) a future
invocation of dpkg-genchanges.

15.1.4 dpkg-shlibdeps - calculates shared library dependencies

See dpkg-shlibdeps(1).

15.1.5 dpkg-distaddfile - adds a file to debian/files

Some packages’ uploads need to include files other than the source and binary package files.

dpkg-distaddfile adds a file to the debian/files file so that it will be included in the .changes file when
dpkg-genchanges is run.

It is usually invoked from the binary target of debian/rules:

dpkg-distaddfile filename section priority

The filename is relative to the directory where dpkg-genchanges will expect to find it - this is usually the directory
above the top level of the source tree. The debian/rules target should put the file there just before or just after calling
dpkg-distaddfile.

The section and priority are passed unchanged into the resulting .changes file.

15.1.6 dpkg-genchanges - generates a .changes upload control file

See dpkg-genchanges(1).

15.1.7 dpkg-parsechangelog - produces parsed representation of a changelog

See dpkg-parsechangelog(1).
1 This is so that the control file which is produced has the right permissions

118 Chapter 15. Source packages (from old Packaging Manual)

Debian Policy Manual, Release 4.7.0.2

15.1.8 dpkg-architecture - information about the build and host system

See dpkg-architecture(1).

15.2 The Debian package source tree

The source archive scheme described later is intended to allow aDebian package source tree with some associated package
metadata to be reproduced and transported easily. The Debian package source tree is a version of the original program
with certain files added for the benefit of the packaging process, and with any other changes required made to the rest of
the source code and installation scripts.

The extra files created for Debian are in the subdirectory debian of the top level of the Debian package source tree.
They are described below.

15.2.1 debian/rules - the main building script

See Main building script: debian/rules.

15.2.2 debian/substvars and variable substitutions

See Variable substitutions: debian/substvars.

15.2.3 debian/files

See Generated files list: debian/files.

15.2.4 debian/tmp

This is the default temporary location for the construction of binary packages by the binary target. The directory tmp
serves as the root of the file system tree as it is being constructed (for example, by using the package’s upstream makefiles
install targets and redirecting the output there), and it also contains the DEBIAN subdirectory. See Creating package files
- dpkg-deb.

This is only a default and can be easily overridden. Most packaging tools no longer use debian/tmp, instead preferring
debian/pkg for the common case of a source package building only one binary package. Such tools usually only use
debian/tmp as a temporary staging area for built files and do not construct packages from it.

If several binary packages are generated from the same source tree, it is usual to use a separate debian/pkg directory
for each binary package as the temporary construction locations.

Whatever temporary directories are created and used by the binary target must of course be removed by the clean
target.

15.3 Source packages as archives

As it exists on the FTP site, a Debian source package consists of three related files. You must have the right versions of
all three to be able to use them.

Debian source control file - .dsc
This file is a control file used by dpkg-source to extract a source package. See Debian source package control
files – .dsc.

Original source archive - package_upstream-version.orig.tar.gz
This is a compressed (with gzip -9) tar file containing the source code from the upstream authors of the program.

15.2. The Debian package source tree 119

Debian Policy Manual, Release 4.7.0.2

Debian package diff - package_upstream_version-revision.diff.gz
This is a unified context diff (diff -u) giving the changes which are required to turn the original source into
the Debian source. These changes may only include editing and creating plain files. The permissions of files, the
targets of symbolic links and the characteristics of special files or pipes may not be changed and no files may be
removed or renamed.

All the directories in the diff must exist, except the debian subdirectory of the top of the source tree, which will
be created by dpkg-source if necessary when unpacking.

The dpkg-source program will automatically make the debian/rules file executable (see below).

If there is no original source code - for example, if the package is specially prepared for Debian or the Debian maintainer
is the same as the upstream maintainer - the format is slightly different: then there is no diff, and the tarfile is named
package_version.tar.gz, and preferably contains a directory named package-version.

15.4 Unpacking a Debian source package without dpkg-source

dpkg-source -x is the recommended way to unpack a Debian source package. However, if it is not available it is
possible to unpack a Debian source archive as follows:

1. Untar the tarfile, which will create a .orig directory.

2. Rename the .orig directory to package-version.

3. Create the subdirectory debian at the top of the source tree.

4. Apply the diff using patch -p0.

5. Untar the tarfile again if you want a copy of the original source code alongside the Debian version.

It is not possible to generate a valid Debian source archive without using dpkg-source. In particular, attempting to use
diff directly to generate the .diff.gz file will not work.

15.4.1 Restrictions on objects in source packages

The source package may not contain any hard links,23 device special files, sockets or setuid or setgid files.4

The source packaging tools manage the changes between the original and Debian source using diff and patch. Turning
the original source tree as included in the .orig.tar.gz into the Debian package source must not involve any changes
which cannot be handled by these tools. Problematic changes which cause dpkg-source to halt with an error when
building the source package are:

• Adding or removing symbolic links, sockets or pipes.

• Changing the targets of symbolic links.

• Creating directories, other than debian.

• Changes to the contents of binary files.

Changes which cause dpkg-source to print a warning but continue anyway are:

• Removing files, directories or symlinks.5

• Changed text files which are missing the usual final newline (either in the original or the modified source tree).

Changes which are not represented, but which are not detected by dpkg-source, are:

2 This is not currently detected when building source packages, but only when extracting them.
3 Hard links may be permitted at some point in the future, but would require a fair amount of work.
4 Setgid directories are allowed.
5 Renaming a file is not treated specially - it is seen as the removal of the old file (which generates a warning, but is otherwise ignored), and the

creation of the new one.

120 Chapter 15. Source packages (from old Packaging Manual)

Debian Policy Manual, Release 4.7.0.2

• Changing the permissions of files (other than debian/rules) and directories.

The debian directory and debian/rules are handled specially by dpkg-source - before applying the changes it will
create the debian directory, and afterwards it will make debian/rules world-executable.

15.4. Unpacking a Debian source package without dpkg-source 121

Debian Policy Manual, Release 4.7.0.2

122 Chapter 15. Source packages (from old Packaging Manual)

CHAPTER

SIXTEEN

CONTROL FILES AND THEIR FIELDS (FROM OLD PACKAGING
MANUAL)

Many of the tools in the dpkg suite manipulate data in a common format, known as control files. Binary and source
packages have control data as do the .changes files which control the installation of uploaded files, and dpkg’s internal
databases are in a similar format.

16.1 Syntax of control files

See Syntax of control files.

It is important to note that there are several fields which are optional as far as dpkg and the related tools are concerned,
but which must appear in every Debian package, or whose omission may cause problems.

16.2 List of fields

See List of fields.

This section now contains only the fields that didn’t belong to the Policy manual.

16.2.1 Filename and MSDOS-Filename

These fields in Packages files give the filename(s) of (the parts of) a package in the distribution directories, relative to
the root of the Debian hierarchy. If the package has been split into several parts the parts are all listed in order, separated
by spaces.

16.2.2 Size and MD5sum

These fields in Packages files give the size (in bytes, expressed in decimal) and MD5 checksum of the file(s) which
make(s) up a binary package in the distribution. If the package is split into several parts the values for the parts are listed
in order, separated by spaces.

16.2.3 Status

This field in dpkg’s status file records whether the user wants a package installed, removed or left alone, whether it is
broken (requiring re-installation) or not and what its current state on the system is. Each of these pieces of information
is a single word.

123

Debian Policy Manual, Release 4.7.0.2

16.2.4 Config-Version

If a package is not installed or not configured, this field in dpkg’s status file records the last version of the package which
was successfully configured.

16.2.5 Conffiles

This field in dpkg’s status file contains information about the automatically-managed configuration files held by a package.
This field should not appear anywhere in a package!

16.2.6 Obsolete fields

These are still recognized by dpkg but should not appear anywhere any more.

Revision; Package-Revision; Package_Revision
The Debian revision part of the package version was at one point in a separate control field. This field went through
several names.

Recommended

Old name for Recommends.

Optional

Old name for Suggests.

Class

Old name for Priority.

124 Chapter 16. Control files and their fields (from old Packaging Manual)

CHAPTER

SEVENTEEN

CONFIGURATION FILE HANDLING (FROM OLD PACKAGING
MANUAL)

dpkg can do a certain amount of automatic handling of package configuration files.

Whether this mechanism is appropriate depends on a number of factors, but basically there are two approaches to any
particular configuration file.

The easymethod is to ship a best-effort configuration in the package, and use dpkg’s conffilemechanism to handle updates.
If the user is unlikely to want to edit the file, but you need them to be able to without losing their changes, and a new
package with a changed version of the file is only released infrequently, this is a good approach.

The hard method is to build the configuration file from scratch in the postinst script, and to take the responsibility for
fixing any mistakes made in earlier versions of the package automatically. This will be appropriate if the file is likely to
need to be different on each system.

17.1 Automatic handling of configuration files by dpkg

A binary package may contain a package metadata file called conffiles. This file should be a list of filenames of
configuration files needing automatic handling, separated by newlines. The filenames should be absolute pathnames, and
the files referred to should actually exist in the package.

When a package is upgraded dpkg will process the configuration files during the configuration stage, shortly before it
runs the package’s postinst script,

For each file it checks to see whether the version of the file included in the package is the same as the one that was
included in the last version of the package (the one that is being upgraded from); it also compares the version currently
installed on the system with the one shipped with the last version.

If neither the user nor the package maintainer has changed the file, it is left alone. If one or the other has changed their
version, then the changed version is preferred - i.e., if the user edits their file, but the package maintainer doesn’t ship a
different version, the user’s changes will stay, silently, but if the maintainer ships a new version and the user hasn’t edited
it the new version will be installed (with an informative message). If both have changed their version the user is prompted
about the problem and must resolve the differences themselves.

The comparisons are done by calculating the MD5 message digests of the files, and storing the MD5 of the file as it was
included in the most recent version of the package.

When a package is installed for the first time dpkg will install the file that comes with it, unless that would mean over-
writing a file already on the file system.

However, note that dpkg will not replace a conffile that was removed by the user (or by a script). This is necessary
because with some programs a missing file produces an effect hard or impossible to achieve in another way, so that a
missing file needs to be kept that way if the user did it.

Note that a package should not modify a dpkg-handled conffile in its maintainer scripts. Doing this will lead to dpkg
giving the user confusing and possibly dangerous options for conffile update when the package is upgraded.

125

Debian Policy Manual, Release 4.7.0.2

17.2 Fully-featured maintainer script configuration handling

For files which contain site-specific information such as the hostname and networking details and so forth, it is better to
create the file in the package’s postinst script.

This will typically involve examining the state of the rest of the system to determine values and other information, and
may involve prompting the user for some information which can’t be obtained some other way.

When using this method there are a couple of important issues which should be considered:

If you discover a bug in the program which generates the configuration file, or if the format of the file changes from one
version to the next, you will have to arrange for the postinst script to do something sensible - usually this will mean editing
the installed configuration file to remove the problem or change the syntax. You will have to do this very carefully, since
the user may have changed the file, perhaps to fix the very problem that your script is trying to deal with - you will have
to detect these situations and deal with them correctly.

If you do go down this route it’s probably a good idea to make the program that generates the configuration file(s) a
separate program in /usr/sbin, by convention called packageconfig and then run that if appropriate from the post-
installation script. The packageconfig program should not unquestioningly overwrite an existing configuration - if its
mode of operation is geared towards setting up a package for the first time (rather than any arbitrary reconfiguration later)
you should have it check whether the configuration already exists, and require a --force flag to overwrite it.

126 Chapter 17. Configuration file handling (from old Packaging Manual)

CHAPTER

EIGHTEEN

ALTERNATIVE VERSIONS OF AN INTERFACE - UPDATE-ALTERNATIVES
(FROM OLD PACKAGING MANUAL)

When several packages all provide different versions of the same program or file it is useful to have the system select a
default, but to allow the system administrator to change it and have their decisions respected.

For example, there are several versions of the vi editor, and there is no reason to prevent all of them from being installed
at once, each under their own name (nvi, vim or whatever). Nevertheless it is desirable to have the name vi refer to
something, at least by default.

If all the packages involved cooperate, this can be done with update-alternatives.

Each package provides its own version under its own name, and calls update-alternatives in its postinst to register
its version (and again in its prerm to deregister it).

See the update-alternatives(8) man page for details.

If update-alternatives does not seem appropriate you may wish to consider using diversions instead.

Do not use alternatives for systemd configuration files. See Binary packages for more information.

127

Debian Policy Manual, Release 4.7.0.2

128 Chapter 18. Alternative versions of an interface - update-alternatives (from old Packaging
Manual)

CHAPTER

NINETEEN

DIVERSIONS - OVERRIDING A PACKAGE’S VERSION OF A FILE
(FROM OLD PACKAGING MANUAL)

It is possible to have dpkg not overwrite a file when it reinstalls the package it belongs to, and to have it put the file from
the package somewhere else instead.

This can be used locally to override a package’s version of a file, or by one package to override another’s version (or
provide a wrapper for it).

Before deciding to use a diversion, read Alternative versions of an interface - update-alternatives (from old Packaging
Manual) to see if you really want a diversion rather than several alternative versions of a program.

There is a diversion list, which is read by dpkg, and updated by a special program dpkg-divert. Please see
dpkg-divert(8) for full details of its operation.

When a package wishes to divert a file from another, it should call dpkg-divert in its preinst to add the diversion
and rename the existing file. For example, supposing that a smailwrapper package wishes to install a wrapper around
/usr/sbin/smail:

dpkg-divert --package smailwrapper --add --rename \

--divert /usr/sbin/smail.real /usr/sbin/smail

The --package smailwrapper ensures that smailwrapper’s copy of /usr/sbin/smail can bypass the diversion
and get installed as the true version. It’s safe to add the diversion unconditionally on upgrades since it will be left unchanged
if it already exists, but dpkg-divert will display a message. To suppress that message, make the command conditional
on the version from which the package is being upgraded:

if [upgrade != "$1"] || dpkg --compare-versions "$2" lt 1.0-2; then

dpkg-divert --package smailwrapper --add --rename \

--divert /usr/sbin/smail.real /usr/sbin/smail

fi

where 1.0-2 is the version at which the diversion was first added to the package. Running the command during abort-
upgrade is pointless but harmless.

The postrm has to do the reverse:

if [remove = "$1" -o abort-install = "$1" -o disappear = "$1"]; then

dpkg-divert --package smailwrapper --remove --rename \

--divert /usr/sbin/smail.real /usr/sbin/smail

fi

If the diversion was added at a particular version, the postrm should also handle the failure case of upgrading from an
older version (unless the older version is so old that direct upgrades are no longer supported):

129

Debian Policy Manual, Release 4.7.0.2

if [abort-upgrade = "$1"] && dpkg --compare-versions "$2" lt 1.0-2; then

dpkg-divert --package smailwrapper --remove --rename \

--divert /usr/sbin/smail.real /usr/sbin/smail

fi

where 1.0-2 is the version at which the diversion was first added to the package. The postrm should not remove the
diversion on upgrades both because there’s no reason to remove the diversion only to immediately re-add it and since the
postrm of the old package is run after unpacking so the removal of the diversion will fail.

Do not attempt to divert a file which is vitally important for the system’s operation - when using dpkg-divert there is
a time, after it has been diverted but before dpkg has installed the new version, when the file does not exist.

Do not attempt to divert a conffile, as dpkg does not handle it well.

Do not use diversions for files that have their own native override mechanisms, such as systemd unit files. See Binary
packages for more information.

130 Chapter 19. Diversions - overriding a package’s version of a file (from old Packaging Manual)

CHAPTER

TWENTY

DEBIAN POLICY CHANGES PROCESS

20.1 Introduction

To introduce a change in the current Debian Policy, the change proposal has to go through a certain process.1

20.2 Change Goals

• The change should be technically correct, and consistent with the rest of the policy document. This means no
legislating the value of π. This also means that the proposed solution be known to work; iterative design processes
do not belong in policy.

• The change should not be too disruptive; if very many packages become instantly buggy, then instead there should
be a transition plan. Exceptions should be rare (only if the current state is really untenable), and probably blessed
by the TC.

• The change has to be reviewed in depth, in the open, where any one may contribute; a publicly accessible, archived,
open mailing list.

• Proposal should be addressed in a timely fashion.

• Any domain experts should be consulted, since not every policy mailing list subscriber is an expert on everything,
including policy maintainers.

• The goal is rough consensus on the change, which should not be hard if the matter is technical. Technical issues
where there is no agreement should be referred to the TC; non-technical issues should be referred to the whole
developer body, and perhaps general resolutions lie down that path.

• Package maintainers whose packages may be impacted should have access to policy change proposals, even if they
do not subscribe to policy mailing lists (policy gazette?).

20.3 Current Process

Each suggested change goes through different states. These states are denoted through either usertags of the debian-
policy@packages.debian.org user or, for moreinfo, patch, pending, and wontfix, regular tags.

Current list of bugs

The Policy delegates are responsible for managing the tags on bugs and will update tags as new bugs are submitted or as
activity happens on bugs. All Debian Developers should feel free to add the seconded tag as described below. Other tags
should be changed with the coordination of the Policy Team.

1 This process was originally developed by Margarita Manterola, Clint Adams, Russ Allbery and Manoj Srivastava. In 2017, Sean Whitton depre-
cated the ‘issue’ usertag and added use of the ‘moreinfo’ tag, after discussions at DebConf17.

131

mailto:debian-policy@packages.debian.org
mailto:debian-policy@packages.debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?src=debian-policy&pend-exc=done

Debian Policy Manual, Release 4.7.0.2

20.3.1 State A: More information required

The Policy delegates are unable to determine whether the bug is really a Policy matter, or judge that there are missing
details that would prevent a fruitful discussion (and may result in a confused and unhelpful discussion).

Policy delegates ask the original submitter to provide the missing details. Others are asked to refrain from discussing
whatever they take the issue to be, limiting their postings to attempts to supply the missing details.

TAG: moreinfo

What needs to happen next: Submitter (or someone else) provides the requested information within 30 days, or the bug
is closed.

The majority of bugs will skip this stage.

20.3.2 State B: Discussion

Discuss remedy. Alternate proposals. Discussion guided by delegates. There should be a clear time limit to this stage,
but as yet we have not set one.

TAG: discussion

What needs to happen next: Reach a conclusion and consensus in the discussion and make a final proposal for what should
be changed (if anything), moving to the proposal tag.

20.3.3 State C: Proposal

A final proposal has emerged from the discussion, and there is a rough consensus on how to proceed to resolve the issue.

TAG: proposal

What needs to happen next: Provided that the rough consensus persists, develop a patch against the current Policy doc-
ument with specific wording of the change. Often this is done in conjunction with the proposal, in which case one may
skip this step and move directly to patch tag.

20.3.4 State D: Wording proposed

A patch against the Policy document reflecting the consensus has been created and is waiting for formal seconds. The
standard patch tag is used for this state, since it’s essentially equivalent to the standard meaning of that tag.

TAG: patch

What needs to happen next: The proposal needs to be reviewed and seconded. Any Debian developer who agrees with the
change and the conclusion of rough consensus from the discussion should say so in the bug log by seconding the proposal.

20.3.5 State E: Seconded

The proposal is signed off on by N Debian Developers. To start with, we’re going with N=3, meaning that if three
Debian Developers agree, not just with the proposal but with the conclusion that it reflects consensus and addresses the
original issue – it is considered eligible for inclusion in the next version of Policy. Since Policy is partly a technical project
governance method, one must be a Debian Developer to formally second, although review and discussion is welcome from
anyone. Once this tag has been applied, the bug is waiting for a Policy team member to apply the patch to the package
repository.

TAG: seconded

What needs to happen next: A Policy maintainer does the final review and confirmation, and then applies the patch for
the next Policy release.

This tag is not used very much because normally a Policy maintainer applies the patch and moves the proposal to the next
state once enough seconds are reached.

132 Chapter 20. Debian Policy changes process

https://bugs.debian.org/cgi-bin/pkgreport.cgi?src=debian-policy&pend-exc=done&tag=moreinfo
https://bugs.debian.org/cgi-bin/pkgreport.cgi?src=debian-policy&pend-exc=done&tag=discussion
https://bugs.debian.org/cgi-bin/pkgreport.cgi?src=debian-policy&pend-exc=done&tag=proposal
https://bugs.debian.org/cgi-bin/pkgreport.cgi?src=debian-policy&pend-exc=done&tag=patch
https://bugs.debian.org/cgi-bin/pkgreport.cgi?src=debian-policy&pend-exc=done&tag=seconded

Debian Policy Manual, Release 4.7.0.2

20.3.6 State F: Accepted

Change accepted, will be in next upload. The standard pending tag is used for this state since it matches the regular
meaning of pending.

TAG: pending

What needs to happen next: The bug is now in the waiting queue for the next Policy release, and there’s nothing left to
do except for upload a new version of Policy.

20.3.7 State G: Reject

Rejected proposals. The standard wontfix is used for this state. Normally, bugs in this state will not remain open (excepting
stalled); instead, a Policy team member will close them with an explanation. The submitter may then appeal to the tech-
ctte if they so desire. Alternately, issues appealed to the tech-ctte may remain open with this tag while that appeal
proceeds.

TAG: wontfix

We may use one of the following tags here. It’s not clear whether we need more tags for this stage.

dubious
Not a policy matter

ctte
Referred to the Technical Committee (tech-ctte)

devel
Referred to the developer body

delegate
Rejected by a Policy delegate

obsolete
Consensus on a proposal was not forthcoming, and the bug is to be closed. Those wishing to restart discussion
should open a new bug, but only if they have a concrete new change proposal.

stalled
Consensus on a proposal was not forthcoming. However, the bug should be kept open, as a form of documentation,
and to minimise the number of duplicate filings.

What may need to happen next: The bug should be closed once a final resolution is reached (excepting stalled), or
retagged to an appropriate state if that final resolution reverses the decision to reject the proposal.

20.4 Other Tags

All Policy bugs are additionally categorized by class of bug.

The normative tag is used for bugs that make normative changes to Policy, meaning that the dictates of Policy will change
in some fashion as part of the resolution of the bug if the proposal is accepted. The full process is followed for such bugs.

TAG: normative

The informative tag is used for bugs about wording issues, typos, informative footnotes, or other changes that do not
affect the formal dictates of Policy, just the presentation. The same tags are used for these bugs for convenience, but the
Policy maintainers may make informative changes without following the full process. Informative bugs fall under their
discretion.

TAG: informative

20.4. Other Tags 133

https://bugs.debian.org/cgi-bin/pkgreport.cgi?src=debian-policy&pend-exc=done&tag=pending
https://bugs.debian.org/cgi-bin/pkgreport.cgi?src=debian-policy&pend-exc=done&tag=rejected
https://bugs.debian.org/cgi-bin/pkgreport.cgi?src=debian-policy&pend-exc=done&tag=normative
https://bugs.debian.org/cgi-bin/pkgreport.cgi?src=debian-policy&pend-exc=done&tag=informative

Debian Policy Manual, Release 4.7.0.2

The packaging tag is used for bugs about the packaging and build process of the debian-policy Debian package. These
bugs do not follow the normal process and will not have the other tags except for pending and wontfix (used with their
normal meanings).

TAG: packaging

134 Chapter 20. Debian Policy changes process

https://bugs.debian.org/cgi-bin/pkgreport.cgi?src=debian-policy&pend-exc=done&tag=packaging

CHAPTER

TWENTYONE

MAINTAINER SCRIPT FLOWCHARTS

The flowcharts1 included in this appendix use the following conventions:

• maintainer scripts and their arguments are within boxes;

• actions carried out external to the scripts are in italics; and

• the dpkg status of the package at the end of the run are in bold type.

Fig. 1: Installing a package that was not previously installed

1 These flowcharts were originally created by Margarita Manterola for the Debian Women project wiki.

135

Debian Policy Manual, Release 4.7.0.2

Fig. 2: Installing a package that was previously removed, but not purged

136 Chapter 21. Maintainer script flowcharts

Debian Policy Manual, Release 4.7.0.2

Fig. 3: Upgrading a package

137

Debian Policy Manual, Release 4.7.0.2

Fig. 4: Removing a package

138 Chapter 21. Maintainer script flowcharts

Debian Policy Manual, Release 4.7.0.2

Fig. 5: Purging a package previously removed

139

Debian Policy Manual, Release 4.7.0.2

Fig. 6: Removing and purging a package

140 Chapter 21. Maintainer script flowcharts

CHAPTER

TWENTYTWO

UPGRADING CHECKLIST

22.1 About the checklist

The checklist below has been created to simplify the upgrading process of old packages. This list is not official or
normative. It only provides an indication of what has changed and whether you are likely to need to make changes to your
package in light of this. If you have doubts about a certain topic, if you need more details, or if you think some other
package does not comply with policy, please refer to the Policy Manual itself.

All of the changes from version 3.0.0 onwards indicate which section of the Policy Manual discusses the issue. The
section numbering should still be accurate for changes back to the 2.5.0 release. Before that point, the sections listed here
probably no longer correspond to sections in the modern Policy Manual.

Here is how the check list works: Check which policy version your package was checked against last (indicated in the
Standards-Version field of the source package). Then move upwards until the top and check which of the items on
the list might concern your package. Note which sections of policy discuss this, and then check out the Policy Manual for
details. Once you’ve made all necessary changes to match the current rules, update the value of Standards-Version
to the current Policy Manual version.

If an item in the list is followed by the name of a Lintian tag in square brackets, it indicates that the policy requirement
is covered by that Lintian tag. The lack of such an annotation does not mean that no Lintian tag exists to cover the
requirement. Our coverage of these annotations is quite incomplete, and patches to this checklist are very welcome.

The sections in this checklist match the values for the Standards-Version control field in omitting the minor patch
version, except in the two anomalous historical cases where normative requirements were changed in a minor patch
release.

22.2 Version 4.7.0

Released April, 2024.

2.2.1
Document that source packages in the main archive area may build binary packages in the contrib archive area,
although this is discouraged unless the source package is inconvenient to split. This does not relax the requirement
that source packages in main must not have build dependencies outside of main.

2.2.2
The non-free-firmware archive area has been added.

3.9
Maintainer scripts should use native overriding mechanisms instead of dpkg-divert, wherever possible. Maintainer
scripts must not divert configuration files used by systemd components.

Maintainer scripts must not use the alternatives system for systemd configuration files.

141

Debian Policy Manual, Release 4.7.0.2

4.8
Hard links are permitted in source packages.

4.9
For packages in contrib, and for packages in non-free with Autobuild: yes, required targets in d/rules are no
longer permitted to attempt network access. Previously, only packages in main had this restriction.

5.6.13
The Description field is not present in .changes files if no binary packages are being uploaded.

5.6.19
The Binary field is not present in .changes files if no binary packages are being uploaded.

6.3
Packages that automatically start or stop system services must include systemd units unless the service is only
intended for use on systems running alternative init systems. Previously, systemd also supported init scripts, but
that support is being removed.

22.3 Version 4.6.2

Released December, 2022.

3.8
Essential packages are only required to provide their core functionality when unconfigured if they had previously
been configured at least once.

6.5 & 6.6
The new package version is provided as an additional argument following the old package version to several pre-
inst, prerm, and postrm maintainer script actions.

11.8.4
When computing the priority for alternatives for /usr/bin/x-window-manager, start with a priority of 40, not
20, and don’t increase the priority based on support for the (obsolete) Debian menu system.

22.4 Version 4.6.1

Released May, 2022.

9.1.1
Restore permission for packages for non-64-bit architectures to install files to /usr/lib64/.

9.7.2 & 9.7.3
The text of these sections has been updated to reflect the package split of bin:mime-support into bin:media-types
and bin:mailcap.

22.5 Version 4.6.0

Released August, 2021.

9.1.1
No package is allowed to install files in /usr/lib64/. Previously, this prohibition only applied to packages for
64-bit architectures.

12.1
Manual pages may be included in dependencies, not only in the packages containing the things they document.

142 Chapter 22. Upgrading checklist

Debian Policy Manual, Release 4.7.0.2

22.6 Version 4.5.1

Released November, 2020.

2.3, 4.5 & 12.5
The copyright information for files in a package must be copied verbatim into /usr/share/doc/PACKAGE/

copyright when all of the following hold:

1. the distribution license for those files requires that copyright information be included in all copies and/or
binary distributions;

2. the files are shipped in the binary package, either in source or compiled form; and

3. the form in which the files are present in the binary package does not include a plain text version of their
copyright notices.

Note that there is no change to the requirement to copy all licensing information into /usr/share/doc/

PACKAGE/copyright.

(Previously, it was always required for all copyright information to be copied into /usr/share/doc/PACKAGE/
copyright.)

4.17
Packages must not contain a non-default series file. That is, dpkg’s vendor-specific patch series feature must not be
used for packages in the Debian archive.

(previously a “should not”)

22.7 Version 4.5.0

Released January, 2020.

9.2.1
When maintainers choose a new hardcoded or dynamically generated username for packages to use, they should
start this username with an underscore.

9.3.1
Packages that include system services should include systemd service units to start or stop those services.

Including an init script is encouraged if there is no systemd unit, and optional if there is (previously, it was recom-
mended).

In the common case that a package includes a single system service, the service unit should have the same name as
the package plus the “.service” extension. If an init script is included, it should have the same name as the systemd
unit.

9.3.2
It is encouraged for init scripts to support the status argument (previously, it was recommended).

9.3.3
Use of update-rc.d is required if the package includes an init script (previously, Policy said in one place that it was
required, and in another said that it was recommended).

22.8 Version 4.4.1

Released September, 2019.

5.6.26
A package control file must not have more than one Vcs-<type> field.

22.6. Version 4.5.1 143

Debian Policy Manual, Release 4.7.0.2

If the package is maintained in multiple version control systems, the maintainer should specify the one that they
would prefer other people to use as the basis for proposing changes to the package.

9.10 & 11.5
doc-base registration is now optional, from being recommended.

9.12
Document /run/reboot-required mechanism.

copyright-format
State some syntactical restrictions on the Files: field. Wildcards are required to match the contents of directories,
and the space character separates patterns and cannot be escaped.

22.9 Version 4.4.0

Released July, 2019.

4.9
The recommended way to implement the build process of a Debian package, in the absence of a good reason to use
a different approach, is the dh tool. This recommendation includes the contents of the debian/rules building
script.

Some examples of good reasons to use a different approach are given. The recommendation to use dh does not
always apply, and use of dh is not required.

5.6.26
Permit -b in Vcs-Hg as well as Vcs-Git.

7.5
Document versioned Provides.

virtual
New logind and default-logind virtual packages for a package providing logind API (via D-Bus and
sd-login(3)), and for Debian’s preferred implementation, respectively.

22.10 Version 4.3.0

Released December, 2018.

2.3 & 4.5
In cases where a package’s distribution license explicitly permits its copyright information to be excluded from
distributions of binaries built from the source, a verbatim copy of the package’s copyright information should nor-
mally still be included in the copyright file, but it need not be if creating and maintaining a copy of that information
involves significant time and effort.

4.9
Required targets must not write outside of the unpacked source package tree, except for TMPDIR, /tmp and
/var/tmp.

4.17
Packages should not contain a non-default series file. That is, dpkg’s vendor-specific patch series feature should not
be used for packages in the Debian archive.

10.1
Binaries should be stripped using strip --strip-unneeded --remove-section=.comment

--remove-section=.note (as dh_strip already does).

144 Chapter 22. Upgrading checklist

Debian Policy Manual, Release 4.7.0.2

10.1
It is no longer suggested nor recommended to use install -s to strip binaries, because it gets several things
wrong.

10.2
When stripping shared libraries with strip(1), you should additionally pass --remove-section=.comment
--remove-section=.note (as dh_strip already does).

virtual
New dbus-session-bus and default-dbus-session-bus virtual packages for a package providing the D-
Bus session bus, and for Debian’s preferred D-Bus implementation, respectively.

22.11 Version 4.2.1

Released August, 2018.

10.4 & perl
The requirement that the shebang at the top of Perl command scripts be #!/usr/bin/perl is relaxed from a
‘must’ to a ‘should’.

22.12 Version 4.2.0

Released August, 2018.

4.9
The package build should be as verbose as reasonably possible. This means that debian/rules should pass to
the commands it invokes options that cause them to produce verbose output.

4.9
Required targets may attempt network access, via the loopback interface, to services on the build host that have
been started by the build.

4.9.1
New terse tag that can appear in DEB_BUILD_OPTIONS to make a package build less verbose.

5.2 & 5.4
The Standards-Version field is now mandatory, not just recommended.

12.7
Upstream release notes, when available, should be installed as /usr/share/doc/package/NEWS.gz. Upstream
changelogs may be made available as /usr/share/doc/package/changelog.gz.

This is a relaxation of older Policy which said that the upstream changelog should be made accessible at this path.
Now it is up to maintainer discretion whether it is useful to install it.

The practice of installing the upstream release notes as /usr/share/doc/package/changelog.gz is permit-
ted but deprecated.

22.13 Version 4.1.5

Released July, 2018.

4.9.2
Document how debian/rules and the Rules-Requires-Root field interact.

5.6.12
You should not change a package’s epoch, even in experimental, without getting consensus on debian-devel first.

22.11. Version 4.2.1 145

Debian Policy Manual, Release 4.7.0.2

5.6.12.1
Epochs should not be used for the purpose of rolling back the version of a package. Use the +really convention.

5.6.31
Document the Rules-Requires-Root field.

9.1.1
Update Debian’s version of the Filesystem Hierarchy Standard from 2.3 to 3.0, and update the list of exceptions.
Only a tiny minority of packages, if any, should be made buggy by this change.

9.3.2 & 10.4
Update version of POSIX standard for shell scripts from SUSv3 to POSIX.1-2017 (also known as SUSv4 in some
contexts).

22.14 Version 4.1.4

Released April, 2018.

3.2.2
The part of the version number after the epoch must not be reused for a version of the package with different
contents, even after the version of the package previously using that part of the version number is no longer present
in any archive suites.

3.2.2
For non-native packages, the upstream version must not be reused for different upstream source code, so that for
each source package name and upstream version number there exists exactly one original source archive contents.

4.9
The get-orig-source rules target has been removed. Packages should transition to debian/watch and use
uscan where possible.

9.1.2
If /etc/staff-group-for-usr-local does not exist, /usr/local and all subdirectories created by packages
should have permissions 0755 and be owned by root:root. If the file exists, the old permissions of 2775 and
ownership of root:staff should remain.

22.15 Version 4.1.3

Released December, 2017.

5.6.26
URLs given in VCS-* headers should use a scheme that provides confidentiality (https, for example) if the VCS
repository supports it. [vcs-field-uses-insecure-uri]

7.8
Built-Using should be used exactly when there are license or DFSG requirements to retain full source code in
the archive. Previously, the description of the field implied it was needed in other cases too.

9.1.1
libc may also install files in /lib64.

9.3.3.1
If a package’s daemon should not be autostarted unless the local administrator has explicitly requested it, the
package’s postinst should use the new defaults-disabled option of update-rc.d.

The old method of including DISABLED=yes in the package’s /etc/default file should not be used.

146 Chapter 22. Upgrading checklist

Debian Policy Manual, Release 4.7.0.2

11.4
Clarify that programs may invoke either /usr/bin/editor and /usr/bin/pager directly, or use editor and
pager and rely on PATH.

12.5
The Creative Commons CC0 1.0 Universal license (CC0-1.0) is now included in /usr/share/

common-licenses and does not need to be copied verbatim in the package copyright file.

22.16 Version 4.1.2

Released November, 2017.

3.1.1
Binary packages that have potentially offensive content should have the suffix -offensive. This replaces an older
convention to use -off. As before, whether the contents of a package needs this content warning is a matter of
maintainer discretion.

10.2
Private shared object files should be installed in subdirectories of /usr/lib or /usr/lib/triplet. This change
permits private shared object files to take advantage of multiarch, and also removes the implication that it is per-
missible to install private shared object files directly into /usr/lib/triplet.

10.4
The shebang at the top of Perl command scripts must be #!/usr/bin/perl. (Previously, this was a ‘should’
rather than a ‘must’.)

22.17 Version 4.1.1

Released September, 2017.

4.4
debian/changelog must exist in source packages.

9.2.3
The canonical non-existent home directory is /nonexistent.

22.18 Version 4.1.0

Released August, 2017.

2.2.1
Non-default alternative dependencies on non-free packages are permitted for packages in main.

4.11
If upstream provides OpenPGP signatures, including the upstream signing key as debian/upstream/

signing-key.asc in the source package and using the pgpsigurlmangle option in debian/watch con-
figuration to indicate how to find the upstream signature for new releases is recommended.

4.15
Packages should build reproducibly when certain factors are held constant; see 4.15 for the list.

4.15
Packages are recommended to build reproducibly even when build paths and most environment variables are al-
lowed to vary.

9.1.1
Only the dynamic linker may install files to /lib64/.

22.16. Version 4.1.2 147

Debian Policy Manual, Release 4.7.0.2

No package for a 64 bit architecture may install files to /usr/lib64/ or any subdirectory.

11.8.3
The required behaviour of x-terminal-emulator -e has been clarified, and updated to replace a false claim
about the behaviour of xterm.

Programs must support -e command where command may include multiple arguments, which must be executed
as if the arguments were passed to execvp directly, bypassing the shell.

If this execution fails and -e has a single argument, xterm’s fallback behaviour of passing command to the shell
is permitted but not required.

22.19 Version 4.0.1

Released August, 2017.

2.5
Priorities are now used only for controlling which packages are part of a minimal or standard Debian installation
and should be selected based on functionality provided directly to users (so nearly all shared libraries should have
a priority of optional). Packages may now depend on packages with a lower priority.

The extra priority has been deprecated and should be treated as equivalent to optional. All extra priorities
should be changed to optional. Packages with a priority of optionalmay conflict with each other (but packages
that both have a priority of standard or higher still may not conflict).

5.6.30
New section documenting the Testsuite field in Debian source control files.

8.1.1
Shared libraries must now invoke ldconfig by means of triggers, instead of maintscripts.

9.3.3
Packages are recommended to use debhelper tools instead of invoking update-rc.d and invoke-rc.d directly.

9.3.3
Policy’s description of how the local system administrator may modify the runlevels at which a daemon is started
and stopped, and how init scripts may depend on other init scripts, have been removed. These are now handled by
LSB headers.

9.4
Policy’s specification of the console messages that should be emitted by init.d scripts has been removed. This is
now defined by LSB, for sysvinit, and is not expected to be followed by other init systems.

9.6
Packages installing a Free Desktop entry must not also install a Debian menu system entry.

9.9
The prohibition against depending on environment variables for reasonable defaults is only for programs on the
system PATH and only for custom environment variable settings (not, say, a sane PATH).

22.20 Version 4.0.0

Released May, 2017.

4.3
config.sub and config.guess should be updated at build time or replaced with the versions from autotools-
dev.

148 Chapter 22. Upgrading checklist

Debian Policy Manual, Release 4.7.0.2

4.9
New TARGET set of dpkg-architecture variables and new DEB_*_ARCH_BITS and DEB_*_ARCH_ENDIAN
variables.

4.9.1
New DEB_BUILD_OPTIONS tag, nodoc, which says to suppress documentation generation (but continue to build
all binary packages, even documentation packages, just let them be mostly empty).

5.2
Automatically-generated debug packages do not need to have a corresponding stanza in debian/control. (This
is existing practice; this Policy update is just clearer about it.)

5.6.12
Colons are not permitted in upstream version numbers.

7.7
New Build-Depends-Arch and Build-Conflicts-Arch fields are now supported.

8.4
The recommended package name for shared library development files is now libraryname-dev or
librarynameapiversion-dev, not librarynamesoversion-dev.

9.1.1
The stable release of Debian supports /run, so packages may now assume that it exists and do not need any special
dependency on a version of initscripts.

9.3.2
New optional try-restart standard init script argument, which (if supported) should restart the service if it is
already running and otherwise just report success.

9.3.2
Support for the status init script argument is recommended.

9.3.3.2
Packages must not call /etc/init.d scripts directly even as a fallback, and instead must always use invoke-rc.
d (which is essential and shouldn’t require any conditional).

9.11.1
Instructions for upstart integration removed since upstart is no longer maintained in Debian.

10.1
Packages may not install files in both /path and /usr/path, and must manage any backward-compatibility
symlinks so that they don’t break if /path and /usr/path are the same directory.

10.6
Packages should assume device files in /dev are dynamically managed and don’t have to be created by the package.
Packages other than those whose purpose is to manage /devmust not create or remove files there when a dynamic
management facility is in use. Named pipes and device files outside of /dev should normally be created on demand
via init scripts, systemd units, or similar mechanisms, but may be created and removed in maintainer scripts if they
must be created during package installation.

10.9
Checking with the base-passwd maintainer is no longer required (or desirable) when creating a new dynamic user
or group in a package.

12.3
Dependencies on *-doc packages should be at most Recommends (Suggests if they only include documentation in
supplemental formats).

12.5

22.20. Version 4.0.0 149

Debian Policy Manual, Release 4.7.0.2

The Mozilla Public License 1.1 and 2.0 (MPL-1.1 and MPL-2.0) are now included in /usr/share/

common-licenses and do not need to be copied verbatim in the package copyright file.

copyright-format
The https form of the copyright-format URL is now allowed and preferred in the Format field.

perl
The Perl search path now includes multiarch directories. The vendor directory for architecture-specific modules is
now versioned to support multiarch.

virtual
New adventure virtual package for implementations of the classic Colossal Cave Adventure game.

virtual
New httpd-wsgi3 virtual package for Python 3WSGI-capable HTTP servers. The existing httpd-wsgi virtual
package is for Python 2 WSGI-capable HTTP servers.

virtual
New virtual-mysql-client, virtual-mysql-client-core, virtual-mysql-server,
virtual-mysql-server-core, and virtual-mysql-testsuite virtual packages for MySQL-compatible
software.

22.21 Version 3.9.8

Released April, 2016.

9.6
The menu system is deprecated in favor of the FreeDesktop menu standard. New requirements set for FreeDesktop
menu entries.

9.7
New instructions for registering media type handlers with the FreeDesktop system, which automatically synchro-
nizes with mailcap and therefore replaces mailcap registration for packages using desktop entries.

22.22 Version 3.9.7

Released February, 2016.

10.5
Symbolic links must not traverse above the root directory.

9.2.2
32bit UIDs in the range 65536-4294967293 are reserved for dynamically allocated user accounts.

5.1
Empty field values in control files are only permitted in the debian/control file of a source package.

4.9
debian/rules: required targets must not attempt network access.

12.3
recommend to ship additional documentation for package pkg in a separate package pkg-doc and install it into
/usr/share/doc/pkg.

150 Chapter 22. Upgrading checklist

Debian Policy Manual, Release 4.7.0.2

22.23 Version 3.9.6

Released September, 2014.

9.1
The FHS is relaxed to allow a subdirectory of /usr/lib to hold a mixture of architecture-independent and
architecture-dependent files, though directories entirely composed of architecture-independent files should be lo-
cated in /usr/share.

9.1
The FHS requirement for /usr/local/lib64 to exist if /lib64 or /usr/lib64 exists is removed.

9.1
An FHS exception has been granted for multiarch include files, permitting header files to instead be installed to
/usr/include/triplet.

10.1
Binaries must not be statically linked with the GNU C library, see policy for exceptions.

4.4
It is clarified that signature appearing in debian/changelog should be the details of the person who prepared this
release of the package.

11.5
The default web document root is now /var/www/html

virtual
java1-runtime and java2-runtime are removed, javaN-runtime and javaN-runtime-headless are
added for all N between 5 and 9.

virtual
Added httpd-wsgi for WSGI capable HTTP servers.

perl
Perl packages should use the %Config hash to locate module paths instead of hardcoding paths in @INC.

perl
Perl binary modules and any modules installed into $Config{vendorarch}must depend on the relevant perlapi-
* package.

22.24 Version 3.9.5

Released October, 2013.

5.1
Control data fields must not start with the hyphen character (-), to avoid potential confusions when parsing clear-
signed control data files that were not properly unescaped.

5.4, 5.6.24
Checksums-Sha1 and Checksums-Sha256 are now mandatory in .dsc files.

5.6.25, 5.8.1
The DM-Upload-Allowed field is obsolete. Permissions are now granted via dak-commands files.

5.6.27
New section documenting the Package-List field in Debian source control files.

5.6.28
New section documenting the Package-Type field in source package control files.

22.23. Version 3.9.6 151

Debian Policy Manual, Release 4.7.0.2

5.6.29
New section documenting the Dgit field in Debian source control files.

9.1.1.8
The exception to the FHS for the /selinux was removed.

10.7.3
Packages should remove all obsolete configuration files without local changes during upgrades. The
dpkg-maintscript-helper tool, available from the dpkg package sinceWheezy, can help with this.

10.10
The name of the files and directories installed by binary packages must be encoded in UTF-8 and should be re-
stricted to ASCII when possible. In the system PATH, they must be restricted to ASCII.

11.5.2
Stop recommending to serve HTML documents from /usr/share/doc/package.

12.2
Packages distributing Info documents should use install-info’s trigger, and do not need anymore to depend on dpkg
(>= 1.15.4) | install-info.

debconf
The escape capability is now documented.

virtual
mp3-decoder and mp3-encoder are removed.

22.25 Version 3.9.4

Released August, 2012.

2.4
New tasks archive section.

4.9
build-arch and build-indep are now mandatory targets in debian/rules.

5.6.26
New section documenting the Vcs-* fields, which are already in widespread use. Note the mechanism for speci-
fying the Git branch used for packaging in the Vcs-Git field.

7.1
The deprecated relations < and > now must not be used.

7.8
New Built-Using field, which must be used to document the source packages for any binaries that are incor-
porated into this package at build time. This is used to ensure that the archive meets license requirements for
providing source for all binaries.

8.6
Policy for dependencies between shared libraries and other packages has been largely rewritten to document the
symbols system and more clearly document handling of shared library ABI changes. symbols files are now
recommended over shlibs files in most situations. All maintainers of shared library packages should review the
entirety of this section.

9.1.1
Packages must not assume the /run directory exists or is usable without a dependency on initscripts (>=

2.88dsf-13.3) until the stable release of Debian supports /run.

9.7
Packages including MIME configuration can now rely on triggers and do not need to call update-mime.

152 Chapter 22. Upgrading checklist

Debian Policy Manual, Release 4.7.0.2

9.11
New section documenting general requirements for alternate init systems and specific requirements for integrating
with upstart.

12.5
All copyright files must be encoded in UTF-8.

22.26 Version 3.9.3

Released February, 2012.

2.4
New archive sections education, introspection, and metapackages added.

5.6.8
The Architecture field in *.dsc files may now contain the value any all for source packages building both
architecture-independent and architecture-dependent packages.

7.1
If a dependency is restricted to particular architectures, the list of architectures must be non-empty.

9.1.1
/run is allowed as an exception to the FHS and replaces /var/run. /run/lock replaces /var/lock. The
FHS requirements for the older directories apply to these directories as well. Backward compatibility links will
be maintained and packages need not switch to referencing /run directly yet. Files in /run should be stored in a
temporary file system.

9.1.4
New section spelling out the requirements for packages that use files in /run, /var/run, or /var/lock. This
generalizes information previously only in 9.3.2.

9.5
Cron job file names must not contain . or + or they will be ignored by cron. They should replace those characters
with _. If a package provides multiple cron job files in the same directory, they should each start with the package
name (possibly modified as above), -, and then some suitable suffix.

9.10
Packages using doc-base do not need to call install-docs anymore.

10.7.4
Packages that declare the same conffilemay see left-over configuration files from each other even if they conflict.

11.8
The Policy rules around Motif libraries were just a special case of normal rules for non-free dependencies and were
largely obsolete, so they have been removed.

12.5
debian/copyright is no longer required to list the Debian maintainers involved in the creation of the package
(although note that the requirement to list copyright information is unchanged).

copyright-format
Version 1.0 of the “Machine-readable debian/copyright file” specification is included.

mime
This separate document has been retired and and its (short) contents merged into Policy section 9.7. There are no
changes to the requirements.

perl
Packages may declare an interest in the perl-major-upgrade trigger to be notified of major upgrades of perl.

22.26. Version 3.9.3 153

Debian Policy Manual, Release 4.7.0.2

virtual
ttf-japanese-{mincho, gothic} is renamed to fonts-japanese-{mincho, gothic}.

22.27 Version 3.9.2

Released April, 2011.

*
Multiple clarifications throughout Policy where “installed” was used and the more precise terms “unpacked” or
“configured” were intended.

3.3
The maintainer address must accept mail from Debian role accounts and the BTS. At least one human must be
listed with their personal email address in Uploaders if the maintainer is a shared email address. The duties of a
maintainer are also clearer.

5
All control fields are now classified as simple, folded, or multiline, which governs whether their values must be a
single line or may be continued across multiple lines and whether line breaks are significant.

5.1
Parsers are allowed to accept stanza separation lines containing whitespace, but control files should use completely
empty lines. Ordering of stanzas is significant. Field names must be composed of printable ASCII characters
except colon and must not begin with #.

5.6.25
The DM-Upload-Allowed field is now documented.

6.5
The system state maintainer scripts can rely upon during each possible invocation is now documented. In several
less-common cases, this is stricter than Policy had previously documented. Packages with complex maintainer
scripts should be reviewed in light of this new documentation.

7.2
The impact on system state when maintainer scripts that are part of a circular dependency are run is now docu-
mented. Circular dependencies are now a should not.

7.2
The system state when postinst and prerm scripts are run is now documented, and the documentation of the
special case of dependency state for postrm scripts has been improved. postrm scripts are required to gracefully
skip actions if their dependencies are not available.

9.1.1
GNU/Hurd systems are allowed /hurd and /servers directories in the root filesystem.

9.1.1
Packages installing to architecture-specific subdirectories of /usr/lib must use the value returned by
dpkg-architecture -qDEB_HOST_MULTIARCH, not by dpkg-architecture -qDEB_HOST_GNU_TYPE;
this is a path change on i386 architectures and a no-op for other architectures.

virtual
mailx is now a virtual package provided by packages that install /usr/bin/mailx and implement at least the
POSIX-required interface.

154 Chapter 22. Upgrading checklist

Debian Policy Manual, Release 4.7.0.2

22.28 Version 3.9.1

Released July, 2010.

3.2.1
Date-based version components should be given as the four-digit year, two-digit month, and then two-digit day,
but may have embedded punctuation.

3.9
Maintainer scripts must pass --package to dpkg-divert when creating or removing diversions and must not
use --local.

4.10
Only dpkg-gencontrol supports variable substitution. dpkg-genchanges (for *.changes) and
dpkg-source (for *.dsc) do not.

7.1
Architecture restrictions and wildcards are also allowed in binary package relationships provided that the binary
package is not architecture-independent.

7.4
Conflicts and Breaks should only be used when there are file conflicts or one package breaks the other, not
just because two packages provide similar functionality but don’t interfere.

8.1
The SONAME of a library should change whenever the ABI of the library changes in a way that isn’t backward-
compatible. It should not change if the library ABI changes are backward-compatible. Discourage bundling shared
libraries together in one package.

8.4
Ada Library Information (*.ali) files must be installed read-only.

8.6.1, 8.6.2, 8.6.5
Packages should normally not include a shlibs.local file since we now have complete shlibs coverage.

8.6.3
The SONAME of a library may instead be of the form name-major-version.so.

10.2
Libtool .la files should not be installed for public libraries. If they’re required (for libltdl, for instance), the
dependency_libs setting should be emptied. Library packages historically including .la files must continue to
include them (with dependency_libs emptied) until all libraries that depend on that library have removed or
emptied their .la files.

10.2
Libraries no longer need to be built with -D_REENTRANT, which was an obsolete LinuxThreads requirement.
Instead, say explicitly that libraries should be built with threading support and to be thread-safe if the library
supports this.

10.4
/bin/sh scripts may assume that kill supports an argument of -signal, that kill and trap support the
numeric signals listed in the XSI extension, and that signal 13 (SIGPIPE) can be trapped with trap.

10.8
Use of /etc/logrotate.d/package for logrotate rules is now recommended.

10.9
Control information files should be owned by root:root and either mode 644 or mode 755.

11.4, 11.8.3, 11.8.4
Packages providing alternatives for editor, pager, x-terminal-emulator, or x-window-manager should

22.28. Version 3.9.1 155

Debian Policy Manual, Release 4.7.0.2

also provide a slave alternative for the corresponding manual page.

11.5
Cgi-bin executable files may be installed in subdirectories of /usr/lib/cgi-bin and web servers should serve
out executables in those subdirectories.

12.5
The GPL version 1 is now included in common-licenses and should be referenced from there instead of included
in the copyright file.

22.29 Version 3.9.0

Released June, 2010.

4.4, 5.6.15
The required format for the date in a changelog entry and in the Date control field is now precisely specified.

5.1
A control stanza must not contain more than one instance of a particular field name.

5.4, 5.5, 5.6.24
The Checksums-Sha1 and Checksums-Sha256 fields in *.dsc and *.changes files are now documented and
recommended.

5.5, 5.6.16
The Format field of .changes files is now 1.8. The Format field syntax for source package .dsc files allows a
subtype in parentheses, and it is used for a different purpose than the Format field for .changes files.

5.6.2
The syntax of the Maintainer field is now must rather than should.

5.6.3
The comma separating entries in Uploaders is now must rather than should.

5.6.8, 7.1, 11.1.1
Architecture wildcards may be used in addition to specific architectures in debian/control and *.dsc Archi-
tecture fields, and in architecture restrictions in build relationships.

6.3
Maintainer scripts are no longer guaranteed to run with a controlling terminal and must be able to fall back to
noninteractive behavior (debconf handles this). Maintainer scripts may abort if there is no controlling terminal and
no reasonable default for a high-priority question, but should avoid this if possible.

7.3, 7.6.1
Breaks should be used with Replaces for moving files between packages.

7.4
Breaks should normally be used instead of Conflicts for transient issues and moving files between packages.
New documentation of when each should be used.

7.5
Use Conflicts with Provides if only one provider of a virtual facility can be installed at a time.

8.4
All shared library development files are no longer required to be in the -dev package, only be available when the
-dev package is installed. This allows the -dev package to be split as long as it depends on the additional packages.

9.2.2
The UID range of user accounts is extended to 1000-59999.

156 Chapter 22. Upgrading checklist

Debian Policy Manual, Release 4.7.0.2

9.3.2, 10.4
init.d scripts are a possible exception from the normal requirement to use set -e in each shell script.

12.5
The UCB BSD license was removed from the list of licenses that should be referenced from /usr/share/

common-licenses/BSD. It should instead be included directly in debian/copyright, although it will still
be in common-licenses for the time being.

debconf
SETTITLE is now documented (it has been supported for some time). SETTITLE is like TITLE but takes a template
instead of a string to allow translation.

perl
perl-base now provides perlapi-abiname instead of a package based solely on the Perl version. Perl packages must
now depend on perlapi-$Config{debian_abi}, falling back on $Config{version} if $Config{debian_abi} is
not set.

perl
Packages using Makefile.PL should use DESTDIR rather than PREFIX to install into the package staging area.
PREFIX only worked due to a Debian-local patch.

22.30 Version 3.8.4

Released January, 2010.

9.1.1
An FHS exception has been granted for multiarch libraries. Permitting files to instead be installed to /lib/

triplet and /usr/lib/triplet directories.

10.6
Packages may not contain named pipes and should instead create them in postinst and remove them in prerm or
postrm.

9.1.1
/sys and /selinux directories are explicitly allowed as an exception to the FHS.

22.31 Version 3.8.3

Released August, 2009.

4.9
DEB_*_ARCH_CPU and DEB_*_ARCH_OS variables are now documented and recommended over GNU-style
variables for that information.

5.6.8
Source package Architecture fields may contain all in combination with other architectures. Clarify when all and
any may be used in different versions of the field.

5.6.14
The Debian archive software does not support uploading to multiple distributions with one *.changes file.

5.6.19
The Binary field may span multiple lines.

10.2
Shared library packages are no longer allowed to install libraries in a non-standard location and modify ld.so.
conf. Packages should either be installed in a standard library directory or packages using them should be built
with RPATH.

22.30. Version 3.8.4 157

Debian Policy Manual, Release 4.7.0.2

11.8.7
Installation directories for X programs have been clarified. Packages are no longer required to pre-depend on
x11-common before installing into /usr/include/X11 and /usr/lib/X11.

12.1
Manual pages are no longer required to contain only characters representable in the legacy encoding for that lan-
guage.

12.1
Localized man pages should either be kept up-to-date with the original version or warn that they’re not up-to-date,
either with warning text or by showing missing or changed portions in the original language.

12.2
install-info is now handled via triggers so packages no longer need to invoke it in maintainer scripts. Info documents
should now have directory sections and entries in the document. Packages containing info documents should add a
dependency to support partial upgrades.

perl
The requirement for Perl modules to have a versioned Depend and Build-Depend on perl >= 5.6.0-16 has
been removed.

22.32 Version 3.8.2

Released June, 2009.

2.4
The list of archive sections has been significantly expanded. See this debian-devel-announce message for the list
of new sections and rules for how to categorize packages.

3.9.1
All packages must use debconf or equivalent for user prompting, though essential packages or their dependencies
may also fall back on other methods.

5.6.1
The requirements for source package names are now explicitly spelled out.

9.1
Legacy XFree86 servers no longer get a special exception from the FHS permitting /etc/X11/XF86Config-4.

9.1.3
Removed obsolete dependency requirements for packages that use /var/mail.

11.8.5
Speedo fonts are now deprecated. The X backend was disabled starting in lenny.

12.5
The GNU Free Documentation License version 1.3 is included in common-licenses and should be referenced from
there.

22.33 Version 3.8.1

Released March, 2009.

3.8
Care should be taken when adding functionality to essential and such additions create an obligation to support that
functionality in essential forever unless significant work is done.

4.4
Changelog files must be encoded in UTF-8.

158 Chapter 22. Upgrading checklist

http://lists.debian.org/debian-devel-announce/2009/03/msg00010.html

Debian Policy Manual, Release 4.7.0.2

4.4
Some format requirements for changelog files are now “must” instead of “should.”

4.4.1
Alternative changelog formats have been removed. Debian only supports one changelog format for the Debian
Archive.

4.9.1
New nocheck option for DEB_BUILD_OPTIONS indicating any build-time test suite provided by the package
should not be run.

5.1
All control files must be encoded in UTF-8.

5.2
debian/control allows comment lines starting with # with no preceding whitespace.

9.3
Init scripts ending in .sh are not handled specially. They are not sourced and are not guaranteed to be run by
/bin/sh regardless of the #! line. This brings Policy in line with the long-standing behavior of the init system in
Debian.

9.3.2
The start action of an init script must exit successfully and not start the daemon again if it’s already running.

9.3.2
/var/run and /var/lock may be mounted as temporary filesystems, and init scripts must therefore create any
necessary subdirectories dynamically.

10.4
/bin/sh scripts may assume that local can take multiple variable arguments and supports assignment.

11.6
User mailboxes may be mode 600 and owned by the user rather than mode 660, owned by user, and group mail.

22.34 Version 3.8.0

Released June, 2008.

2.4, 3.7
The base section has been removed. contrib and non-free have been removed from the section list; they are only
categories. The base system is now defined by priority.

4.9
If dpkg-source -x doesn’t provide the source that will be compiled, a debian/rules patch target is recommended
and should do whatever else is necessary.

4.9.1, 10.1
Standardized the format of DEB_BUILD_OPTIONS. Specified permitted characters for tags, required that tags
be whitespace-separated, allowed packages to assume non-conflicting tags, and required unknown flags be ignored.

4.9.1
Added parallel=n to the standardized DEB_BUILD_OPTIONS tags, indicating that a package should be built using
up to n parallel processes if the package supports it

4.13
Debian packages should not use convenience copies of code from other packages unless the included package is
explicitly intended to be used that way.

4.14
If dpkg-source -x doesn’t produce source ready for editing and building with dpkg-buildpackage, packages should

22.34. Version 3.8.0 159

Debian Policy Manual, Release 4.7.0.2

include a debian/README.source file explaining how to generate the patched source, add a new modification,
and remove an existing modification. This file may also be used to document packaging a new upstream release
and any other complexity of the Debian build process.

5.6.3
The Uploaders field in debian/control may be wrapped.

5.6.12
An empty Debian revision is equivalent to a Debian revision of 0 in a version number.

5.6.23
New Homepage field for upstream web sites.

6.5, 6.6, 7
The Breaks field declares that this package breaks another and prevents installation of the breaking package unless
the package named in Breaks is deconfigured first. This field should not be used until the dpkg in Debian stable
supports it.

8.1, 8.2
Clarify which files should go into a shared library package, into a separate package, or into the -dev package.
Suggest -tools instead of -runtime for runtime support programs, since that naming is more common in Debian.

9.5
Files in /etc/cron.{hourly,daily,weekly,monthly} must be configuration files (upgraded from should).
Mention the hourly directory.

11.8.6
Packages providing /etc/X11/Xresources files need not conflict with xbase (<< 3.3.2.3a-2), which is
long-obsolete.

12.1
Manual pages in locale-specific directories should use either the legacy encoding for that directory or UTF-8.
Country names should not be included in locale-specific manual page directories unless indicating a significant
difference in the language. All characters in the manual page source should be representable in the legacy encoding
for a locale even if the man page is encoded in UTF-8.

12.5
The Apache 2.0 license is now in common-licenses and should be referenced rather than quoted in debian/

copyright.

12.5
Packages in contrib and non-free should state in the copyright file that the package is not part of Debian GNU/Linux
and briefly explain why.

debconf
Underscore (_) is allowed in debconf template names.

22.35 Version 3.7.3

Released December, 2007.

5.6.12
Package version numbers may contain tildes, which sort before anything, even the end of a part.

10.4
Scripts may assume that /bin/sh supports local (at a basic level) and that its test builtin (if any) supports -a and
-o binary logical operators.

160 Chapter 22. Upgrading checklist

Debian Policy Manual, Release 4.7.0.2

8.5
The substitution variable ${binary:Version} should be used in place of ${Source-Version} for dependencies between
packages of the same library.

menu policy
Substantial reorganization and renaming of sections in the Debian menu structure. Packages with menu entries
should be reviewed to see if the menu section has been renamed or if one of the new sections would be more
appropriate.

5.6.1
The Source field in a .changes file may contain a version number in parentheses.

5.6.17
The acceptable values for the Urgency field are low, medium, high, critical, or emergency.

8.6
The shlibs file now allows an optional type field, indicating the type of package for which the line is valid. The only
currently supported type is udeb, used with packages for the Debian Installer.

3.9.1
Packages following the Debian Configurationmanagement specificationmust allow for translation of their messages
by using a gettext-based system such as po-debconf.

12.5
GFDL 1.2, GPL 3, and LGPL 3 are now in common-licenses and should be referenced rather than quoted in
debian/copyright.

22.36 Version 3.7.2.2

Released October, 2006.

This release broke the normal rule against introducing normative changes without changing the major patch level.

6.1
Maintainer scripts must not be world writeable (up from a should to a must)

22.37 Version 3.7.2

Released April, 2006.

11.5
Revert the cgi-lib change.

22.38 Version 3.7.1

Released April, 2006.

10.2
It is now possible to create shared libraries without relocatable code (using -fPIC) in certain exceptional cases,
provided some procedures are followed, and for creating static libraries with relocatable code (again, using -fPIC).
Discussion on debian-devel@lists.debian.org, getting a rough consensus, and documenting it in README.Debian
constitute most of the process.

11.8.7
Packages should install any relevant files into the directories /usr/include/X11/ and /usr/lib/X11/, but if
they do so, they must pre-depend on x11-common (>= 1:7.0.0)

22.36. Version 3.7.2.2 161

mailto:debian-devel@lists.debian.org

Debian Policy Manual, Release 4.7.0.2

22.39 Version 3.7.0

Released April, 2006.

11.5
Packages shipping web server CGI files are expected to install them in /usr/lib/cgi-lib/ directories. This
location change perhaps should be documented in NEWS

11.5
Web server packages should include a standard scriptAlias of cgi-lib to /usr/lib/cgi-lib.

9.1.1
The version of FHS mandated by policy has been upped to 2.3. There should be no changes required for most
packages, though new top level directories /media, /srv, etc. may be of interest.

5.1, 5.6.3
All fields, apart from the Uploaders field, in the control file are supposed to be a single logical line, which may be
spread over multiple physical lines (newline followed by space is elided). However, any parser for the control file
must allow the Uploaders field to be spread over multiple physical lines as well, to prepare for future changes.

10.4
When scripts are installed into a directory in the system PATH, the script name should not include an extension
that denotes the scripting language currently used to implement it.

9.3.3.2
packages that invoke initscripts now must use invoke-rc.d to do so since it also pays attention to run levels and other
local constraints.

11.8.5.2, 11.8.7, etc
We no longer use /usr/X11R6, since we have migrated away to using Xorg paths. This means, for one thing, fonts
live in /usr/share/fonts/X11/ now, and /usr/X11R6 is gone.

22.40 Version 3.6.2

Released June, 2005.

Recommend doc-base, and not menu, for registering package documentation.

8.1
Run time support programs should live in subdirectories of /usr/lib/ or /usr/share, and preferably the shared
lib is named the same as the package name (to avoid name collisions).

11.5
It is recommended that HTTP servers provide an alias /images to allow packages to share image files with the web
server

22.41 Version 3.6.1

Released August, 2003.

3.10.1
Prompting the user should be done using debconf. Non debconf user prompts are now deprecated.

162 Chapter 22. Upgrading checklist

Debian Policy Manual, Release 4.7.0.2

22.42 Version 3.6.0

Released July, 2003.

Restructuring caused shifts in section numbers and bumping of the minor version number.

Many packagingmanual appendices that were integrated into policy sections are now empty, and replaced with links to the
Policy. In particular, the appendices that included the list of control fields were updated (new fields like Closes, Changed-
By were added) and the list of fields for each of control, .changes and .dsc files is now in Policy, and they’re marked
mandatory, recommended or optional based on the current practice and the behavior of the deb-building tool-chain.

Elimination of needlessly deep section levels, primarily in the chapter Debian Archive, from which two new chapters
were split out, Binary packages and Source packages. What remained was reordered properly, that is, some sects became
sects etc.

Several sections that were redundant, crufty or simply not designed with any sort of vision, were rearranged according
to the formula that everything should be either in the same place or properly interlinked. Some things remained split up
between different chapters when they talked about different aspects of files: their content, their syntax, and their placement
in the file system. In particular, see the new sections about changelog files.

menu policy
Added Games/Simulation and Apps/Education to menu sub-policy

C.2.2
Debian changelogs should be UTF-8 encoded.

10.2
shared libraries must be linked against all libraries that they use symbols from in the same way that binaries are.

7.6
build-depends-indep need not be satisfied during clean target.

22.43 Version 3.5.10

Released May, 2003.

11.8.3
packages providing the x-terminal-emulator virtual package ought to ensure that they interpret the command line
exactly like xterm does.

11.8.4
Window managers compliant with the Window Manager Specification Project may add 40 points for ranking in
the alternatives

22.44 Version 3.5.9

Released March, 2003.

3.4.2
The section describing the Description: package field once again has full details of the long description format.

4.2
Clarified that if a package has non-build-essential build-dependencies, it should have them listed in the Build-
Depends and related fields (i.e. it’s not merely optional).

9.3.2
When asked to restart a service that isn’t already running, the init script should start the service.

22.42. Version 3.6.0 163

Debian Policy Manual, Release 4.7.0.2

12.6
If the purpose of a package is to provide examples, then the example files can be installed into /usr/share/doc/
package (rather than /usr/share/doc/package/examples).

22.45 Version 3.5.8

Released November, 2002.

12.7
It is no longer necessary to keep a log of changes to the upstream sources in the copyright file. Instead, all such
changes should be documented in the changelog file.

7.6
Build-Depends, Build-Conflicts, Build-Depends-Indep, and Build-Conflicts-Indep must also be satisfied when the
clean target is called.

menu policy
A new Apps/Science menu section is available

debconf policy
debconf specification cleared up, various changes.

12.1
It is no longer recommended to create symlinks from nonexistent manual pages to undocumented(7). Missing
manual pages for programs are still a bug.

22.46 Version 3.5.7

Released August, 2002.

Packages no longer have to ask permission to call MAKEDEV in postinst, merely notifying the user ought
to be enough.

2.2.4
cryptographic software may now be included in the main archive.

3.9
task packages are no longer permitted; tasks are now created by a special Tasks: field in the control file.

11.8.4
window managers that support netwm can now add 20 points when they add themselves as an alternative for /usr/
bin/x-window-manager

10.1
The default compilation options have now changed, one should provide debugging symbols in all cases, and op-
tionally step back optimization to -O0, depending on the DEB_BUILD_OPTIONS environment variable.

7.6, 4.8
Addedmention of build-arch, build-indep, etc, in describing the relationships with Build-Depends, Build-Conflicts,
Build-Depends-Indep, and Build-Conflicts-Indep. May need to review the new rules.

8
Changed rules on how, and when, to invoke ldconfig in maintainer scripts. Long rationale.

Added the last note in 3.5.6 upgrading checklist item regarding build rules, please see below

164 Chapter 22. Upgrading checklist

Debian Policy Manual, Release 4.7.0.2

22.47 Version 3.5.6

Released July, 2001.

2.5
Emacs and TeX are no longer mandated by policy to be priority standard packages

11.5
Programs that access docs need to do so via /usr/share/doc, and not via /usr/doc/ as was the policy previ-
ously

12.3
Putting documentation in /usr/doc versus /usr/share/doc is now a “serious” policy violation.

11.5
For web servers, one should not provide non-local access to the /usr/share/doc hierarchy. If one can’t provide
access controls for the http://localhost/doc/ directory, then it is preferred that one ask permission to expose that
information during the install.

7
There are new rules for build-indep/build-arch targets and there is a new Build-Depend-Indep semantic.

22.48 Version 3.5.5

Released May, 2001.

12.1
Manpages should not rely on header information to have alternative manpage names available; it should only use
symlinks or .so pages to do this

Clarified note in 3.5.3.0 upgrading checklist regarding examples and templates: this refers only to those examples
used by scripts; see section 10.7.3 for the whole story

Included a new section 10.9.1 describing the use of dpkg-statoverride; this does not have the weight of policy

Clarify Standards-Version: you don’t need to rebuild your packages just to change the Standards-Version!

10.2
Plugins are no longer bound by all the rules of shared libraries

XWindows related things:

11.8.1
Clarification of priority levels of X Window System related packages

11.8.3
Rules for defining x-terminal-emulator improved

11.8.5
X Font policy rewritten: you must read this if you provide fonts for the X Window System

11.8.6
Packages must not ship /usr/X11R6/lib/X11/app-defaults/

11.8.7
X-related packages should usually use the regular FHS locations; imake-using packages are exempted from
this

11.8.8
OpenMotif linked binaries have the same rules as OSF/Motif-linked ones

22.47. Version 3.5.6 165

http://localhost/doc/

Debian Policy Manual, Release 4.7.0.2

22.49 Version 3.5.4

Released April, 2001.

11.6
The system-wide mail directory is now /var/mail, no longer /var/spool/mail. Any packages accessing the mail spool
should access it via /var/mail and include a suitable Depends field;

11.9; perl-policy
The perl policy is now part of Debian policy proper. Perl programs and modules should follow the current Perl
policy

22.50 Version 3.5.3

Released April, 2001.

7.1
Build-Depends arch syntax has been changed to be less ambiguous. This should not affect any current packages

10.7.3
Examples and templates files for use by scripts should now live in /usr/share/<package> or /usr/lib/
<package>, with symbolic links from /usr/share/doc/<package>/examples as needed

22.51 Version 3.5.2

Released February, 2001.

11.8.6
X app-defaults directory has moved from /usr/X11R6/lib/X11/app-defaults to /etc/X11/

app-defaults

22.52 Version 3.5.1

Released February, 2001.

8.1
dpkg-shlibdeps now uses objdump, so shared libraries have to be run through dpkg-shlibdeps as well as executables

22.53 Version 3.5.0

Released January, 2001.

11.8.5
Font packages for the X Window System must now declare a dependency on xutils (>= 4.0.2)

22.54 Version 3.2.1.1

Released January, 2001.

This release broke the normal rule against introducing normative changes without changing the major patch level.

9.3.2
Daemon startup scripts in /etc/init.d/ should not contain modifiable parameters; these should be moved to a
file in /etc/default/

166 Chapter 22. Upgrading checklist

Debian Policy Manual, Release 4.7.0.2

12.3
Files in /usr/share/doc must not be referenced by any program. If such files are needed, they must be placed
in /usr/share/<package>/, and symbolic links created as required in /usr/share/doc/<package>/

Much of the packaging manual has now been imported into the policy document

22.55 Version 3.2.1

Released August, 2000.

11.8.1
A package of priority standard or higher may provide two binaries, one compiled with support for the X Window
System, and the other without

22.56 Version 3.2.0

Released August, 2000.

10.1
By default executables should not be built with the debugging option -g. Instead, it is recommended to support
building the package with debugging information optionally.

12.8
Policy for packages where the upstream uses HTML changelog files has been expanded. In short, a plain text
changelog file should always be generated for the upstream changes

Please note that the new release of the X window system (3.2) shall probably need sweeping changes in policy

Policy for packages providing the following X-based features has been codified:

11.8.2
X server (virtual package xserver)

11.8.3
X terminal emulator (virtual package x-terminal-emulator)

11.8.4
X window manager (virtual package x-window-manager, and /usr/bin/x-window-manager alternative,
with priority calculation guidelines)

12.8.5
X fonts (this section has been written from scratch)

11.8.6
X application defaults

11.8.7
Policy for packages using the X Window System and FHS issues has been clarified;

11.7.3
No package may contain or make hard links to conffiles

8
Noted that newer dpkg versions do not require extreme care in always creating the shared lib before the symlink,
so the unpack order be correct

22.55. Version 3.2.1 167

Debian Policy Manual, Release 4.7.0.2

22.57 Version 3.1.1

Released November, 1999.

7.1
Correction to semantics of architecture lists in Build-Depends etc. Should not affect many packages

22.58 Version 3.1.0

Released October, 1999.

defunct
/usr/doc/<package> has to be a symlink pointing to /usr/share/doc/<package>, to be maintained by
postinst and prerm scripts.

7.1, 7.6
Introduced source dependencies (Build-Depends, etc.)

9.3.4
/etc/rc.boot has been deprecated in favour of /etc/rcS.d. (Packages should not be touching this directory,
but should use update-rc.d instead)

9.3.3
update-rc.d is now the only allowable way of accessing the /etc/rc?.d/[SK]??* links. Any scripts which
manipulate them directly must be changed to use update-rc.d instead. (This is because the file-rc package handles
this information in an incompatible way.)

12.7
Architecture-specific examples go in /usr/lib/<package>/examples with symlinks from /usr/share/

doc/<package>/examples/* or from /usr/share/doc/<package>/examples itself

9.1.1
Updated FHS to a 2.1 draft; this reverts /var/state to /var/lib

9.7; mime-policy
Added MIME sub-policy document

12.4
VISUAL is allowed as a (higher priority) alternative to EDITOR

11.6
Modified liblockfile description, which affects mailbox-accessing programs. Please see the policy document for
details

12.7
If a package provides a changelog in HTML format, a text-only version should also be included. (Such a version
may be prepared using lynx -dump -nolist.)

3.2.1
Description of how to handle version numbers based on dates added

22.59 Version 3.0.1

Released July, 1999.

10.2
Added the clarification that the .la files are essential for the packages using libtool’s libltdl library, in which case
the .la files must go in the run-time library package

168 Chapter 22. Upgrading checklist

Debian Policy Manual, Release 4.7.0.2

22.60 Version 3.0.0

Released June, 1999.

9.1
Debian formally moves from the FSSTND to the FHS. This is a major change, and the implications of this move
are probably not all known.

4.1
Only 3 digits of the Standards version need be included in control files, though all four digits are still permitted.

12.6
The location of the GPL has changed to /usr/share/common-licenses. This may require changing the copy-
right files to point to the correct location of the GPL and other major licenses

10.2
Packages that use libtool to create shared libraries must include the .la files in the -dev packages

10.8
Use logrotate to rotate log files

now 11.8
section 5.8 has been rewritten (Programs for the X Window System)

9.6; menu-policy
There is now an associated menu policy, in a separate document, that carries the full weight of Debian policy

11.3
Programs which need to modify the files /var/run/utmp, /var/log/wtmp and /var/log/lastlog must be
installed setgid utmp

22.61 Version 2.5.0

Released October, 1998.

Please note that section numbers below this point may not match the current Policy Manual.

• Rearranged the manual to create a new Section 4, Files

– Section 3.3 (“Files”) was moved to Section 4. The Sections that were Section 4 and Section 5 were moved
down to become Section 5 and Section 6.

– What was Section 5.5 (“Log files”) is now a subsection of the new Section 4 (“Files”), becoming section 4.8,
placed after “Configuration files”, moving the Section 4.8 (“Permissions and owners”) to Section 4.9. All
subsections of the old Section 5 after 5.5 were moved down to fill in the number gap.

• Modified the section about changelog files to accommodate upstream changelogs which were formatted as HTML.
These upstream changelog files should now be accessible as /usr/doc/package/changelog.html.gz

• Symlinks are permissible to link the real, or upstream, changelog name to the Debian mandated name.

• Clarified that HTML documentation should be present in some package, though not necessarily the main binary
package.

• Corrected all references to the location of the copyright files. The correct location is /usr/doc/package/
copyright

• Ratified the architecture specification strings to cater to the HURD.

22.60. Version 3.0.0 169

Debian Policy Manual, Release 4.7.0.2

22.62 Version 2.4.1

Released April, 1998.

Updated section 3.3.5 Symbolic links
symbolic links within a toplevel directory should be relative, symbolic links between toplevel directories should be
absolute (cf., Policy Weekly Issue#6, topic 2)

Updated section 4.9 Games
manpages for games should be installed in /usr/man/man6 (cf., Policy Weekly Issue#6, topic 3)

Updated Chapter 12 Shared Libraries
ldconfig must be called in the postinst script if the package installs shared libraries (cf., Policy Weekly Issue #6,
fixes:bug#20515)

22.63 Version 2.4.0

Released January, 1998

Updated section 3.3.4 Scripts

• /bin/sh may be any POSIX compatible shell

• scripts including bashisms have to specify /bin/bash as interpreter

• scripts which create files in world-writable directories (e.g., in /tmp) should use tempfile or mktemp for
creating the directory

Updated section 3.3.5 Symbolic Links
symbolic links referencing compressed files must have the same file extension as the referenced file

Updated section 3.3.6 Device files
/dev/tty* serial devices should be used instead of /dev/cu*

Updated section 3.4.2 Writing the scripts in /etc/init.d

• all /etc/init.d scripts have to provide the following options: start, stop, restart, force-reload

• the reload option is optional and must never stop and restart the service

Updated section 3.5 Cron jobs
cron jobs that need to be executed more often than daily should be installed into /etc/cron.d

Updated section 3.7 Menus
removed section about how to register HTML docs to `menu’ (the corresponding section in 4.4, Web servers and
applications, has been removed in policy 2.2.0.0 already, so this one was obsolete)

New section 3.8 Keyboard configuration
details about how the backspace and delete keys should be handled

New section 3.9 Environment variables
no program must depend on environment variables to get a reasonable default configuration

New section 4.6 News system configuration
/etc/news/organization and /etc/news/server should be supported by all news servers and clients

Updated section 4.7 Programs for the X Window System

• programs requiring a non-free Motif library should be provided as foo-smotif and foo-dmotif package

• if lesstif works reliably for such program, it should be linked against lesstif and not against a non-free Motif
library

170 Chapter 22. Upgrading checklist

Debian Policy Manual, Release 4.7.0.2

Updated section 4.9 Games
games for X Windows have to be installed in /usr/games, just as non-X games

22.64 Version 2.3.0

Released September, 1997.

• new section `4.2 Daemons’ including rules for /etc/services, /etc/protocols, /etc/rpc, and /etc/

inetd.conf

• updated section about `Configuration files’: packages may not touch other packages’ configuration files

• MUAs and MTAs have to use liblockfile

22.65 Version 2.2.0

Released July, 1997.

• added section 4.1 `Architecture specification strings’: use <arch>-linux where <arch> is one of the following: i386,
alpha, arm, m68k, powerpc, sparc.

• detailed rules for /usr/local

• user ID’s

• editor/pager policy

• cron jobs

• device files

• don’t install shared libraries as executable

• app-defaults files may not be conffiles

22.66 Version 2.1.3

Released March, 1997.

• two programs with different functionality must not have the same name

• “Webstandard 3.0”

• “Standard for Console Messages”

• Libraries should be compiled with -D_REENTRANT

• Libraries should be stripped with strip --strip-unneeded

22.67 Version 2.1.2

Released November, 1996.

• Some changes WRT shared libraries

22.64. Version 2.3.0 171

Debian Policy Manual, Release 4.7.0.2

22.68 Version 2.1.1

Released September, 1996.

• No hard links in source packages

• Do not use dpkg-divert or update-alternatives without consultation

• Shared libraries must be installed stripped

22.69 Version 2.1.0

Released August, 1996.

• Upstream changelog must be installed too

172 Chapter 22. Upgrading checklist

CHAPTER

TWENTYTHREE

LICENSE

Copyright © 1996, 1997, 1998 Ian Jackson and Christian Schwarz

These are the copyright dates of the original Policy manual. Since then, this manual has been updated by many others.
No comprehensive collection of copyright notices for subsequent work exists.

This manual is free software; you may redistribute it and/or modify it under the terms of the GNUGeneral Public License
as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

A copy of the GNU General Public License is available as /usr/share/common-licenses/GPL in the Debian dis-
tribution or on the World Wide Web at https://www.gnu.org/licenses/.

173

https://www.gnu.org/licenses/

Debian Policy Manual, Release 4.7.0.2

174 Chapter 23. License

INDEX

R
reboot

signaling, 88
reboot-required, 88
reboot-required.pkgs, 88

S
signaling

reboot, 88

175

	About this manual
	Scope
	New versions of this document
	Authors and Maintainers
	Early history
	Current process
	Improvements

	Related documents
	Definitions
	Translations

	The Debian Archive
	The Debian Free Software Guidelines
	Archive areas
	The main archive area
	The non-free-firmware archive area
	The contrib archive area
	The non-free archive area

	Copyright considerations
	Sections
	Priorities

	Binary packages
	The package name
	Packages with potentially offensive content

	The version of a package
	Version numbers based on dates
	Uniqueness of version numbers

	The maintainer of a package
	The description of a package
	The single line synopsis
	The extended description

	Dependencies
	Virtual packages
	Base system
	Essential packages
	Maintainer Scripts
	Prompting in maintainer scripts

	Source packages
	Standards conformance
	Package relationships
	Changes to the upstream sources
	Debian changelog: debian/changelog
	Copyright: debian/copyright
	Error trapping in makefiles
	Time Stamps
	Restrictions on objects in source packages
	Main building script: debian/rules
	debian/rules and DEB_BUILD_OPTIONS
	debian/rules and Rules-Requires-Root

	Variable substitutions: debian/substvars
	Upstream source location: debian/watch
	Generated files list: debian/files
	Embedded code copies
	Source package handling: debian/README.source
	Reproducibility
	Missing sources: debian/missing-sources
	Vendor-specific patch series

	Control files and their fields
	Syntax of control files
	Debian source package template control files – debian/control
	Debian binary package control files – DEBIAN/control
	Debian source package control files – .dsc
	Debian upload changes control files – .changes
	List of fields
	Source
	Maintainer
	Uploaders
	Changed-By
	Section
	Priority
	Package
	Architecture
	Essential
	Package interrelationship fields: Depends, Pre-Depends, Recommends, Suggests, Breaks, Conflicts, Provides, Replaces, Enhances
	Standards-Version
	Version
	Epochs should be used sparingly
	Special version conventions

	Description
	Distribution
	Date
	Format
	Urgency
	Changes
	Binary
	Installed-Size
	Files
	Closes
	Homepage
	Checksums-Sha1 and Checksums-Sha256
	DM-Upload-Allowed
	Version Control System (VCS) fields
	Package-List
	Package-Type
	Dgit
	Testsuite
	Rules-Requires-Root
	Remarks
	Definition of the keywords
	Provided keywords

	User-defined fields
	Obsolete fields
	DM-Upload-Allowed

	Package maintainer scripts and installation procedure
	Introduction to package maintainer scripts
	Maintainer scripts idempotency
	Controlling terminal for maintainer scripts
	Exit status
	Summary of ways maintainer scripts are called
	Details of unpack phase of installation or upgrade
	Details of configuration
	Details of removal and/or configuration purging

	Declaring relationships between packages
	Syntax of relationship fields
	Binary Dependencies - Depends, Recommends, Suggests, Enhances, Pre-Depends
	Packages which break other packages - Breaks
	Conflicting binary packages - Conflicts
	Virtual packages - Provides
	Overwriting files and replacing packages - Replaces
	Overwriting files in other packages
	Replacing whole packages, forcing their removal

	Relationships between source and binary packages - Build-Depends, Build-Depends-Indep, Build-Depends-Arch, Build-Conflicts, Build-Conflicts-Indep, Build-Conflicts-Arch
	Additional source packages used to build the binary - Built-Using

	Shared libraries
	Run-time shared libraries
	ldconfig

	Shared library support files
	Static libraries
	Development files
	Dependencies between the packages of the same library
	Dependencies between the library and other packages
	Generating dependencies on shared libraries
	Shared library ABI changes
	The symbols system
	The symbols files present on the system
	The symbols File Format
	Providing a symbols file

	The shlibs system
	The shlibs files present on the system
	The shlibs File Format
	Providing a shlibs file

	The Operating System
	File system hierarchy
	File System Structure
	Site-specific programs
	The system-wide mail directory
	/run and /run/lock

	Users and groups
	Introduction
	UID and GID classes
	Non-existent home directories

	Starting system services
	Introduction
	Writing the scripts
	Interfacing with init systems
	Managing the links
	Running init scripts

	Boot-time initialization
	Example

	Console messages from init.d scripts
	Cron jobs
	Cron job file names

	Menus
	Multimedia handlers
	Registration of media type handlers with desktop entries
	Registration of media type handlers with mailcap entries
	Providing media types to files

	Keyboard configuration
	Environment variables
	Registering Documents using doc-base
	Alternate init systems
	Event-based boot with upstart

	Signaling that a reboot is required

	Files
	Binaries
	Libraries
	Shared libraries
	Scripts
	Symbolic links
	Device files
	Configuration files
	Definitions
	Location
	Behavior
	Sharing configuration files
	User configuration files (“dotfiles”)

	Log files
	Permissions and owners
	The use of dpkg-statoverride

	File names

	Customized programs
	Architecture specification strings
	Architecture wildcards

	Daemons
	Using pseudo-ttys and modifying wtmp, utmp and lastlog
	Editors and pagers
	Web servers and applications
	Mail transport, delivery and user agents
	News system configuration
	Programs for the X Window System
	Providing X support and package priorities
	Packages providing an X server
	Packages providing a terminal emulator
	Packages providing a window manager
	Packages providing fonts
	Application defaults files
	Installation directory issues

	Perl programs and modules
	Emacs lisp programs
	Games

	Documentation
	Manual pages
	Info documents
	Additional documentation
	Preferred documentation formats
	Copyright information
	Machine-readable copyright information

	Examples
	Changelog files and release notes

	Introduction and scope of these appendices
	Binary packages (from old Packaging Manual)
	Creating package files - dpkg-deb
	Binary package metadata files
	The binary package control file: control
	Time Stamps

	Source packages (from old Packaging Manual)
	Tools for processing source packages
	dpkg-source - packs and unpacks Debian source packages
	dpkg-buildpackage - overall package-building control script
	dpkg-gencontrol - generates binary package control files
	dpkg-shlibdeps - calculates shared library dependencies
	dpkg-distaddfile - adds a file to debian/files
	dpkg-genchanges - generates a .changes upload control file
	dpkg-parsechangelog - produces parsed representation of a changelog
	dpkg-architecture - information about the build and host system

	The Debian package source tree
	debian/rules - the main building script
	debian/substvars and variable substitutions
	debian/files
	debian/tmp

	Source packages as archives
	Unpacking a Debian source package without dpkg-source
	Restrictions on objects in source packages

	Control files and their fields (from old Packaging Manual)
	Syntax of control files
	List of fields
	Filename and MSDOS-Filename
	Size and MD5sum
	Status
	Config-Version
	Conffiles
	Obsolete fields

	Configuration file handling (from old Packaging Manual)
	Automatic handling of configuration files by dpkg
	Fully-featured maintainer script configuration handling

	Alternative versions of an interface - update-alternatives (from old Packaging Manual)
	Diversions - overriding a package’s version of a file (from old Packaging Manual)
	Debian Policy changes process
	Introduction
	Change Goals
	Current Process
	State A: More information required
	State B: Discussion
	State C: Proposal
	State D: Wording proposed
	State E: Seconded
	State F: Accepted
	State G: Reject

	Other Tags

	Maintainer script flowcharts
	Upgrading checklist
	About the checklist
	Version 4.7.0
	Version 4.6.2
	Version 4.6.1
	Version 4.6.0
	Version 4.5.1
	Version 4.5.0
	Version 4.4.1
	Version 4.4.0
	Version 4.3.0
	Version 4.2.1
	Version 4.2.0
	Version 4.1.5
	Version 4.1.4
	Version 4.1.3
	Version 4.1.2
	Version 4.1.1
	Version 4.1.0
	Version 4.0.1
	Version 4.0.0
	Version 3.9.8
	Version 3.9.7
	Version 3.9.6
	Version 3.9.5
	Version 3.9.4
	Version 3.9.3
	Version 3.9.2
	Version 3.9.1
	Version 3.9.0
	Version 3.8.4
	Version 3.8.3
	Version 3.8.2
	Version 3.8.1
	Version 3.8.0
	Version 3.7.3
	Version 3.7.2.2
	Version 3.7.2
	Version 3.7.1
	Version 3.7.0
	Version 3.6.2
	Version 3.6.1
	Version 3.6.0
	Version 3.5.10
	Version 3.5.9
	Version 3.5.8
	Version 3.5.7
	Version 3.5.6
	Version 3.5.5
	Version 3.5.4
	Version 3.5.3
	Version 3.5.2
	Version 3.5.1
	Version 3.5.0
	Version 3.2.1.1
	Version 3.2.1
	Version 3.2.0
	Version 3.1.1
	Version 3.1.0
	Version 3.0.1
	Version 3.0.0
	Version 2.5.0
	Version 2.4.1
	Version 2.4.0
	Version 2.3.0
	Version 2.2.0
	Version 2.1.3
	Version 2.1.2
	Version 2.1.1
	Version 2.1.0

	License
	Index

